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Abstract This paper presents three multimodal learning analytic approaches from a
hands-on learning activity. We use video, audio, gesture and bio-physiology data from a
two-condition study (N = 20), to identify correlations between the multimodal data,
experimental condition, and two learning outcomes: design quality and learning. The
three approaches incorporate: 1) human-annotated coding of video data, 2) automated
coding of gesture, audio and bio-physiological data and, 3) concatenated human-
annotated and automatically annotated data. Within each analysis we employ the same
machine learning and sequence mining techniques. Ultimately we find that each
approach provides different affordances depending on the similarity metric and the
dependent variable. For example, the analysis based on human-annotated data found
strong correlations among multimodal behaviors, experimental condition, success and
learning, when we relaxed constraints on temporal similarity. The second approach
performed well when comparing students’ multimodal behaviors as a time series, but
was less effective using the temporally relaxed similarity metric. The take-away is that
there are several strategies for doing multimodal learning analytics, and that many of
these approaches can provide a meaningful glimpse into a complex data set, glimpses
that may be difficult to identify using traditional approaches.

Keywords Learning analytics . Signal processing . Constructionism

Introduction

The twenty-first century has seen an expansion in the set of tools available for assessing
the quality of a given learning environment (Baker and Yacef 2009; Blikstein and
Worsley 2016; Martin and Sherin 2013). A number of the traditional tools: test and quiz
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performance, speeches and essays; are modes of expression that have been around for
centuries and remain the more privileged forms of assessment. For all of their peda-
gogical shortcomings, these forms of assessment have the benefit of being widely
accepted and easy to interpret. However, contemporary learning sciences research is
increasingly concerned with additional constructs: motivation, engagement, collabora-
tion, creativity, critical thinking, and problem solving, for example. These are con-
structs that tend to be much harder to quantify using traditional testing instruments and
often necessitate adopting an alternative approach that more closely aligns with the
design of constructivist-inspired learning environments (Piaget 1973; Schwartz et al.
2009). By virtue of the breadth of interactions students have with collaborators and
various technological resources, traditional tools and metrics are probably not well
suited for making 1 or other constructionist-based learning environments. Instead,
studying these environments likely requires the use of multimodal analysis. That said
the analytic strategies used in this paper are not limited to the study of constructionist
learning environments. On the contrary, the approaches could prove to be useful across
a broad set of learning contexts, and with a variety of data sources.

In this article we leverage multimodal learning analytics (Blikstein and Worsley
2016; Worsley 2012; Worsley and Blikstein 2013) in order to better understand the
complexities of student learning in a hands-on learning environment. In particular, we
conducted a two-condition experimental study with 20 participants. The two experi-
mental conditions were principle-based reasoning and example-based reasoning
(Worsley and Blikstein 2017). Both principle-based reasoning and example-based
reasoning represent instances of analogical reasoning (Gentner and Holyoak 1997;
Gick and Holyoak 1980). Where they differ is in the level of abstraction of the analogy.
In principle-based reasoning, the analogs are engineering principles. In example-based
reasoning, the analogs are real-world structures. In prior work, we observed that
principle-based reasoning was associated with higher learning gains and higher quality
designs (Worsley and Blikstein 2014b). We collect multimodal data and combine it with
machine learning to compare differences in multimodal behavior between the two
experimental conditions and correlate those behaviors with success and learning.

In what follows we briefly describe prior literature in multimodal learning and
multimodal analysis of learning. We then move on to describe the study from which
our data is derived and the analytic techniques used to analyze this data. Finally, we
present the results from our analyses and discuss the implications of these findings for
future assessments of hands-on learning environments. We conclude with remarks
about limitations and future research.

Multimodal Analysis in Education

Multimodal analysis in education is not a new concept. On the contrary, multimodal
analysis has been the primary means of analysis for decades of researchers trained in

1 BMaking^ has become a twenty-first century buzzword that means different things to different people. And
while making is instantiated in a variety of ways and contexts, the central idea harkens back to
Constructionism, a pedagogical approach based on the possibilities of making personally meaningful, physical
and computational artifacts. As such, Making experiences are often typified by learners completing collabo-
rative, hands-on projects in relatively unstructured environments.
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audio/video analysis, ethnography, etc. (for examples see Barron et al. 2013). These
researchers carefully analyze individual and group behaviors to interpret the inner
workings of various learning environments. One exemplar in this line of work is Kress
et al. (2001). Kress et al. examines multimodality among teachers and students in several
science education classrooms. In each classroom video capture, hand-written, student-
created artifacts, and field notes are used to study the intersection of the text modality with
actions, facial expressions, diagrams and guided noticing (Pea et al. 2004). Among the
findings reported is the inability of text to accurately represent models of student learning
in complex learning environments.2 Specifically, Kress et al. writes:

BFrom our data we can demonstrate that attention to one mode alone fails to
capture the meaning of a communicative event; not just that it fails to capture all
the meaning, but that it fails to capture the meaning.^ (Kress et al. 2001, p. 14)

Kress et al. justifies this claim by presenting several analyses that are based on
triangulating among speech, gestures and diagrams, and show how a given
utterance only has meaning in the context of the other events and actions that
took place during that time. In leveraging Kress et al. (2001) we would argue that if
multimodal analysis is seen as a necessity for understanding student learning in a
traditional science classroom, such a requirement becomes increasingly pronounced
in a constructionist learning environment.

Accordingly, this article builds upon Kress et al. (2001), but also features several
important differences. At a basic level, whereas Kress et al. used video data and student
artifacts, we have the advantage of having a wide set of sensory tools that can capture
user behavior at high frequency and high resolution. Also, a portion of our analysis is
similar to Kress et al.’s identification of characteristic multimodal actions among the
population of students analyzed. Their analysis identifies six different Bconventionalized
forms of action^ which appear to have specific utility to the user. Our multimodal
analyses will also look for common multimodal behaviors among the population of
students that participated in our study. However, because we have more detailed
behavioral and socio-emotional information about each participant, our common be-
haviors incorporate a larger set of modalities, including facial expressions and stress.
Invoking analysis from behavior level data is another example of how this work deviates
from that of Kress et al. (2001), which is largely dismissive of behavior-based studies.
Given the tools available at that time behavioral analysis may have been empirically
fruitless and intractable. However, one of the things that we show, and have shown in
previous work (Worsley and Blikstein 2013), is that multimodal analysis has relevance
for studying learning and performance. The ability to leverage behavioral data is,
partially, a function of the computational tools and high resolution sensor data that
allows researchers to construct user representations that are semi-semantic. A discussion
of the techniques and sensors used will be briefly presented later in this article.

Moreover, when we examine the work of Scherr and Hammer, for example, we see a
clear example of how multimodal representations of learners and groups of learners
play an important part in interpreting how they are framing a given task. Specifically,

2 We define complex environments as those where students physically interact with other individuals and
physical materials in the process of learning.

Int J Artif Intell Educ (2018) 28:385–419 387



Scherr and Hammer study Epistemological framing, which is concerned with the role
that a student’s perception of the nature of knowledge and the task, has on how they
approach the task. Scherr and Hammer (2009) discuss four epistemic frames that are
typified by a combination of speech, gaze, posture and engagement (Table 1). While the
analyses presented in this paper will not attempt to reproduce the same epistemological
frames, Scherr and Hammer’s work highlights the potential for multimodal data to
advance our understanding of human cognition and learning.

Process-Oriented Analysis of Learning

In addition to the importance of multimodal analysis, we also build upon the notion that
student knowledge is infused in the processes that students complete. More specifically,
we define process as the behaviors, actions and interactions that occur while a student or
group of students are completing a given task. Fundamentally, distinguishing between
achievement and process has been an essential part of education research for nearly a
century (Werner 1937), and is the primary consideration of constructionist learning. For
example, Turkle and Papert (1992) provides a prime instance where the researchers
focus on studying learner processes, and not learner outcomes. Specifically, they write,

Using clinical methods inspired by the Piagetian and psychoanalytic traditions,
we built up case studies of children using computers in grade-school settings
where they were encouraged to explore programming without preconceptions
about the Bright way^ to go about it. We took 40 cases for which we had material
both on individual personality and programming style. What we say in this
chapter about gender, programming, and intellectual style is based on the analysis
of these cases. But we believe that what is most important is not any statistical
association between gender and programming styles, but what lies behind the
styles and behind the resistance of our intellectual culture to recognize and
facilitate them both. (Turkle and Papert 1992).

The use of case studies centered on the belief that process was of primary import,
and was more relevant than mere correlations between style and gender. Hence, our use
of process is in line with the guiding principles and perspectives of constructionism
(e.g. Harel and Papert 1991; Kafai 1995; Lawler and Yazdani 1987).

Table 1 Epistemic Frames adapted from Scherr and Hammer (2009)

Frame Gestures Body Posture Gaze Talk Facial
Expression

Worksheet Minimal Forward lean Down on paper Minimal Neutral

Discussion Prolific Up straight Up at peers Audible, Animated Animated

Teaching Assistant Minimal Up straight Up at TA Minimal Neutral

Joking Prolific Frequently changing Frequently changing Animated, Laughter Animated
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Beyond the specifics of the constructionist movement, focusing on process has been
espoused by several other researchers (Atman and Bursic 1998; Atman et al. 2005;
Bamberger and Schön 1983; Lehrer and Schauble 1998; Smith et al. 1994; Toulmin
1999). Among these papers, authors are concerned with analyzing student learning with
the understanding that as the student is participating in the study, they are engaging in a
learning process. For example, Toulmin (1999) advocates for Bknowledge as shared
procedures.^ As such the analysis of student expertise should be situated in practices
central to a domain, as opposed to solely being grounded in language or a final product.
Similarly, Bamberger and Schön (1983) describe learning as a Breflective conversation
with materials.^ The idea of a conversation encapsulates the ways that individuals
interact with their surroundings, both human and non-human, to interpret and make
sense of what they observe. Hence it is not enough to simply look at a structure to
determine its stability. Instead the individual must engage the structure in something
that is akin to a dialogue, applying stimulus to the object and getting feedback from the
object. In previous work (Worsley and Blikstein 2014b), we have qualitatively shown
process-oriented differences between the two experimental conditions described in this
article. Those two experimental conditions are principle-based reasoning and example-
based reasoning. For the purpose of demonstrating the utility of multimodal analysis it
is not essential to understand the specifics of principle-based reasoning or example-
based reasoning. Nonetheless, we will briefly describe the experimental conditions in
the paragraphs to following.

Example-based reasoning is a form of analogical problem solving, in which the
participant’s design is modeled after a real-world object. For example, Worsley and
Blikstein (2017) describe a student that bases his design on a specific chair in his room.
The student then proceeds to make a design that closely resembles that chair.

Principle-based reasoning can also be characterized as a form of analogical
problem solving. However, it differs from example-based reasoning, in that the
participant bases their design on principles from engineering. Common principles
used within the engineering design context are having a wide base, using triangles,
and reinforcement. Instead of working towards a specific exemplar, the student
attempts to piece their design together by iteratively and systematically applying
engineering principles.

Having qualitatively observed marked differences between the two experimental
groups, it is the intention of this article to utilize fine-grained quantitative measures to
define more process-oriented differences.

Methods

Study Participants

The population of students included twelve high school students and eight undergrad-
uate students. The distribution of high school students and undergraduate students was
the same across the two conditions. Nine of the students were women, and 11 were
men. One condition had four women while the other had five. Students were recruited
to be participants through a series of university mailing lists and received $20 for their
participation in the study.
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Study Description

This study involved dyads of students working to complete an engineering design
challenge. The challenge asked students to build a structure that could support a 0.5 lb.
weight as high above a table as possible using basic household materials: one paper
plate, four straws, five wooden sticks, and 5 ft. of garden wire (see Fig. 1). Because no
pencil and paper was provided to students, students largely perceived this as a making/
tinkering task, as opposed to a traditional engineering task for which they would have
been expected to develop calculations as part of their design process. This blending of
engineering design and tinkering often times characterizes K-16 Bmaking^ experiences
where the overall objective is to create a finished and functioning artifact, similar to the
work of an engineer, absent rigorous mathematical calculations to support their designs
(Vossoughi and Bevan 2014). Furthermore, the task mirrors the forms of design
challenges that are often utilized in Makerspace workshops.

The sequence of events completed for the activity included:

1. Baseline Sensor Data Collection – before beginning the actual study, students
complete baseline electro-dermal activation activities to determine their baseline
in both stressful and non-stressful situations.

2. Pre-test (Fig. 2) – students were asked to generate as many ways as possible to make
an unstable structure more stable. The goal of the pre-test was primarily to account for
any differences in prior experience, as well as serve as a reference point for assessing
how each student’s conceptual intuitions changed as a result of the experiment.

Fig. 1 Sample student workspace a building materials

Fig. 2 Diagram presented for pre- and post-test
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Fig. 3 Ladder picture

Fig. 4 Bridge picture

Fig. 5 Igloo picture
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3. Intervention – students participated in either an example-based reasoning interven-
tion or a principle-based reasoning intervention. During both interventions students
were first shown a picture of a ladder (Fig. 3), a bridge (Fig. 4) and an igloo (Fig. 5).
In the example-based condition students were asked to generate three ideas of
relevant structures from their home, community or school that would be useful in
thinking about completing the current task. In the principle-based condition students
were asked to generate three mechanisms, or engineering principles, that cause one
or more of the three items pictured (Fig. 3, Fig. 4, and Fig. 5) to be structurally
sound. The intervention task was three minutes in duration for both conditions.

4. Initial Design Drawing – students worked individually to create a quick sketch of
what they thought their final structure would look like. This task was done as an
intermediate step that would highlight if the intervention alone conferred noticeable
advantages to one condition or the other.

5. Building Activity – students were given the materials and had fifteen minutes to
complete their structure.

6. Post-test – students repeated the pre-test task, and were given access to their pre-
test data. The pre-test was made available to them in order to let them reflect on
their prior designs (i.e. reuse them if they so pleased) and eliminate any concerns
that some students may have forgotten their pre-test answers, while others mem-
orized theirs.

7. Reflection – students verbally reflect on the reasons why their design did or
did not work. (See Fig. 6 for overall study design).

Baseline Data

Pre-Test

Interven�on

Design Sketch

Ac�vity

Post-Test

Reflec�on

Fig. 6 Overall design of the studies
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Data Collection

Throughout the experiment, we collected multimodal data with a depth camera, high
resolution web camera, electro-dermal activation wrist band, and microphone array. The
Microsoft Xbox Kinect sensor was responsible for capturing multi-channel audio, frontal
images and skeletal tracking data using custom developed software. A Logitech HDC920
was used to capture overhead audio and video. Electro-dermal activation was captured
using the Affectiva Q-sensor. All devices were connected to the same computer, except for
the Affectiva Q-sensor, which was synchronized with the computer’s clock before each
experiment. These multimodal data sources allowed us to hand-annotate students’ actions,
as well as quantify speech, hand/wrist movement and electro-dermal activation for each
participant. The following sub-sections describe the data collection in more detail.

Hand-Coded Data

Hand coding of human actions occurred at approximately 1-s intervals. A snapshot of
each pair’s behavior was generated at 1-s intervals, and labeled based on the Object
Manipulation Class that it corresponded to. The snapshots were generated from a
custom application that takes pictures using the Xbox Kinect sensor. In many cases,
determination of the manipulation class could only be determined several seconds after
the action was completed. For example, as a student is preparing to put two pieces close
to one another, it is not clear as to whether this action will be building with those two
pieces, or merely prototyping, until seeing what the student ultimately does with those
two items. In the case that the items are affixed to one another, the action, beginning
from the point that the students gets a hold of the materials, would be classified as a
building action. However, if the items were only placed near each other to physically
prototype an idea, the entire action sequence would be classified as a prototype action.
This approach for coding provides an interpretative lens to each action, when compared
to an approach in which a given participant’s behavior must be described at the time of
observation. In previous work we demonstrated that this form of coding is effective for
studying students in hands-on learning activities (Worsley and Blikstein 2013, 2014a).

Audio Data

Audio data was derived from a combination of audio channels from an overheard web
camera, and audio from the Xbox Kinect sensor. Custom software was developed based
on the Carnegie Mellon University (CMU) Sphinx Speech Recognition Toolkit (Lee
et al. 1990). Specifically, the source code was modified to leverage the program’s voice
activity detection feature. Voice activity detection is an automated means for determin-
ing when voice-based audio is being generated. Several speech recognition software
solutions contain some variant of voice activity detection. The custom software pro-
vided voice detection start and stop times for all of the audio channels. Audio was
considered to be present if either of the audio sources detected a voice, within a given
second of time. Thus the final format of this data is a binary representation. Every
second of the activity is labeled with a zero or one, for the absence or presence of audio
at that time stamp. Because the audio channel captured sound from both participants
this piece of data is the same for each person in a pair.
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Hand/Wrist Movement

Hand/wrist movement data was also generated from the Xbox Kinect sensor. Once
again, a custom-built application was used to store three dimensional data for twelve
upper body joints. The application uses native features available from the Kinect for
Windows SDK, specifically, the ability to conduct skeletal tracking in the seated
position. The custom application stores the data at 10 Hz. From the file generated,
we utilize only the left and right wrist, hand and elbow data points. For each successive
pair of data points we compute the angular displacement for the vectors that connect:
left wrist and left hand; left wrist and left elbow, right wrist and right hand; right wrist
and right elbow. The eventual angular displacement that is recorded is an average of the
four angular displacements. Using angle as the means for comparison reduces biases
introduced by participants having different sized limbs. Accordingly, for each tenth of a
second in time we have stored the total angular hand/wrist displacement.

Electro-Dermal Activation

Electro-dermal activation (also referred to galvanic skin response and/or skin conduc-
tance) readings were captured at 8 Hz. Processing of electro-dermal activation involved
controlling for individual differences in variance, as well as individual differences in
stress response. In practice, this was achieved by collecting baseline data as students
completed the task of counting down by 7. We will refer to this as the Bmath^ stress
test. As additional baseline data, students also completed a Stroop test, and had their
electro-dermal activation recorded during non-task oriented activities. As before, each
data point was time-stamped with the local date and time. Each data point was then
transformed into an index value by subtracting the mean from the Bmath^ stress test,
and then dividing by the standard deviation of the Bmath^ stress test data for that
student. As validation that this approach reduced individual bias, when we compared
electro-dermal activation index values across the different activities, there were no
statistically significant differences between experimental conditions for the baseline
data, the Stroop test, or the math test. However, across the intervention, design phase
and the building activity differences were statistically significant.

In addition to the multimodal data, we also collected manual annotations for the
beginning and end of each phase of the experiment. Start and stop times for each
activity were recorded based on the images from the Kinect sensor and the video
data. Through these annotations we could group data based on the activity that it
is associated with. For example, we know which data corresponds with the
intervention phase, the design sketch phase, and the building activity phase, for
each participant.

Data Extraction

This algorithm is designed to recognize process similarities between participants, and
test the hypothesis that there are multimodal practices that distinguish principle-based
reasoning from example-based reasoning. Within each analysis, the hypothesis is tested
in two ways. First, students are clustered based on the similarity of their processes. This
approach maintains the temporality of the student behaviors. We refer to this approach
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as computing the pair-wise Bprocess similarity metric.^ Second, we conduct a behavior
frequency analysis which relaxes the temporal relationship. The purpose of this ap-
proach is to provide a simplified means for determining process-based differences.
However, even in conducting this analysis, we look at the frequencies in aggregate, and
also split each participant’s process into three adjacent sections. Looking at behavior
frequency at these set intervals moves closer to understanding how student processes
differed without aggregating across the entire process.3

Figure 7 shows the general steps of the algorithm used for analysis. The algorithm
builds on several previous studies (e.g. Berland et al. 2013; Blikstein et al. 2014.; Piech
et al. 2012; Worsley and Blikstein 2013) and makes every effort to maintain the context
of each piece of data by taking temporality into consideration, whenever possible. The
paragraphs to follow provide a summary of each step.

Time-Stamp

The first step of extracting process data is to ensure that all data is properly time-
stamped. Each data stream had been labeled with the local date and time of its
occurrence, and stored as a csv. In the case of the electro-dermal activation data, a data
synchronization step was either manually completed, or completed through the Q-
sensor software. Apart from the electro-dermal activation sensors, all data was collected
on the same computer. Having synchronized data sources allowed us to merge the data
as needed for the different analyses. Merging the data was completed using custom
Python scripts.

Segment

The time-stamped data is then segmented. Across all three analyses we segment
the data every time a pair’s structure is tested. Testing will be described in more
detail later, but for now, the reader can interpret testing as representing an
instance in which at least one person in the pair is eliciting feedback that will
update the students on the current stability of their structure. Testing usually
takes the form of a team member placing the weight on their designed structure.
As a whole, the segmentation process serves to smooth some of the noise in the
data. Instead of having to take into account each of the spikes and troughs that
may emerge from any of the data streams, segmentation allows us to look more
for trends. Noise reduction is also a consideration for the next step.

Cluster4

The segmentation process yields several Btest segments^ for each student, and
hundreds of unique segments when aggregating across all students. These Btest
segments^ are characterized by the proportion of time spent in each possible
behavior. Some of these will be very similar to one another, only differing by

3 With the various grain sizes of data utilized, one concern is dealing with multiple comparison bias. To
address this, we used Benjamini-Hochberg posthoc analysis with an initial alpha of 0.05.
4 Clustering is the process of grouping together items that are similar to one another.
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an infinitesimal amount, while others will vary quite extensively from one another.
The goal of clustering is to identify natural groupings among the various Btest
segments^ and ultimately provide a common set of states, or behaviors, by which
to compare individual user sequences. However, before proceeding with cluster-
ing, we first do data standardization. Namely, we adjust each value, such that all
of the data in a given column has a mean of zero and a standard deviation of one.
This process eliminates bias in clustering by ensuring that each column contrib-
utes equally to the distance metric, which is this case was Euclidean distance.
After standardizing the data, we used X-Means clustering to group the data points
into a set of clusters that place each Btest segment^ with the other Btest segments^
that it is most similar to. Once each Btest segment^ has been grouped with similar
Btest segments,^ each cluster, or group, can be described based on the average

Time-stamp

Segment

Cluster

Re-label

Normalize

Compare
Behavior

Frequency

Compute
Distances

Group
Par�cipants

Compare Groups

Fig. 7 General algorithm used for comparing process (from top to bottom)
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values of all of its members. These values provide the basis for determining
common behavioral practices across the three analyses.

Re-Label

All Btest segments^ that are put into the same cluster are given the same name.
Accordingly, each student’s sequence of Btest segments^ can now be represented as a
list of clusters.

Normalize

In the normalization step, each student’s re-labeled sequence is lengthened so that
we can more directly compare them to one another. The two forms of normaliza-
tion that we use are L-1 normalization and dynamic time warping (Rabiner et al.
1978). In the case of L-1 normalization, each sequence is lengthened so that all
participants’ sequences are of equal length. In dynamic time-warping a modifica-
tion of Levenshtein distance (Levenshtein 1966) is used to find the best match
between pairs of sequences. As with L-1 normalization, dynamic time warping
preserves the order of the data. However, unlike L-1 normalization, dynamic time
warping may change the proportion of total time spent using each cluster type.
Because of this, we used the L-1 normalization when examining the frequency of
cluster usage, but broke the cluster usage frequency into a beginning, middle and
final segment to maintain some of the temporal elements of students’ sequences.
For answering questions around the cycles of iterations, and similarity in point-by-
point process data, the dynamic time warping algorithm seemed more appropriate,
as it preserves the order of the process and is able to capture the distance between
each pair of participants.

Compare Behavior Frequency

After L-1 normalization, the next step is to compare behavior frequency data across the
three metrics of interest: success, experimental condition; and learning. The compari-
sons are based on Mood Median Tests along each of the individual clusters of Btest
segments.^ However, instead of the traditional Mood Median Test, which computes
statistical significance based on a Chi-Square distribution, we use a binomial test. These
two tests were used because the data did not meet the requirements for MANOVA and
violated the typical requirements of a Chi-Square Test. This step represents the
conclusion of one branch of the analysis tree.

Compute Distances

After dynamic time warping, distance is computed between each pair of participants.

Group Participants

After completing dynamic time warping, pairwise distances are computed. Those
pairwise distances are used to construct an n-by-n matrix. As before, this matrix is

Int J Artif Intell Educ (2018) 28:385–419 397



standardized before conducting K-Means clustering with k = 2. Thus, each student is put
into the group that contains other students whose process was most similar to their own.

Compare Participants Groups

Finally, the groups are compared using a binomial test to determine the probability that
individuals were randomly assigned to their specific group. Specifically, it is here that
we examine the hypothesis that different groups, as partitioned by experimental
condition, success on the activity, or based on post-test score, used markedly different
processes from one another.

In general, this algorithm is used to identify common behaviors, from the first round
of clustering, and then use each students’ sequence of common behaviors as the basis
for the second round of clustering or to examine usage of common behaviors between
the two experimental conditions.

In the next three sections (Part 1, Part 2 & Part 3) we outline three separate analyses
that all use the same general algorithm presented above. What will differ for each
analysis is the type of data analyzed.

Part 1: Qualitative Analysis of Learning, Success and Strategies

One of the common strategies used for video data is to produce annotations of student
behaviors. In many respects, producing timestamps any time a student begins a new
action is tantamount to transcribing where the modality of interest is user behaviors.
Prior work on multimodal analysis has leveraged this technique and shown it to be
important for characterizing and understanding student learning (Barron et al. 2013;
Kress et al. 2001). In similar fashion, in this first section, we describe an analysis in
which we timestamped the video data for every instance of six prototypical actions, or
Object Manipulation Classes, as outlined in Table 2. As previously noted, actions were
coded at 1-s intervals based on the video and frontal image data. Because of the nature
of some of the actions, accurate labels could only be determined after the action was
completed. The specific actions are based on Worsley and Blikstein (2013, 2014a)
which showed that this coding paradigm is a useful way for studying hands-on
learning, and that the coding paradigm bears similarity to prior work in engineering
education (Atman et al. 1999).

Table 2 Object Manipulation Classes

Class Codes

c-plan Prototyping ideas or inspecting the materials

c-evaluate Testing a mechanism or testing the system

c-modify Making changes to an existing design

c-nothing Not actively engaging in the activity

c-revert Undoing one of more parts of a previous design

c-realize Putting pieces together as to make the structure
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Common Behavior Analysis

The segmentation that follows hand-coding results in approximately two hundred
unique Btest segments.^ For this analysis each Btest segment^ is defined based on the
proportion of time spent in each of the five Object Manipulation Classes (c-realize, c-
plan, c-modify, c-revert, c-nothing).5 Clustering those Btest segments^ resulted in four
common behaviors, or clusters. Each cluster can be characterized by the relative
proportion of time spent in each of the five activities. As an overview, Fig. 8 shows
the distribution of the four common Btest segment^ types. The labels assigned to each
region of the pie chart will make more sense based on the data presented in Fig. 9 and
in the following paragraphs.

The most frequently occurring cluster, IMPLEMENT, is characterized by signifi-
cantly above average proportions of c-realize and c-revert. The proportion of c-nothing
is below average, as is c-plan. Accordingly, this cluster seems to represent project or
idea implementation in the absence of planning and/or modifying.

Because the primary actions for this cluster of Btest segments^ involves either
adding to an existing structure (c-realize), or undoing an existing structure (c-revert),
we call this cluster IMPLEMENT. That nearly two-fifths of the Btest segments^ are
characterized by implementing an idea, is in line with the fact that the overall task is
focused on hands-on manipulation of materials.

The second most frequently occurring cluster, PREPARE, is typified by above
average c-plan behavior and above average c-nothing behavior.

At the same time, this cluster also represents below average c-modify, and c-realize
and appears to be roughly average for c-revert. We call this cluster PREPARE, as the

5 c-evaluate does not appear because it was used to determine where to segment the data. Additionally, we
have appended Bc-Bto the beginning of each object manipulation class to help delineate them from the
multimodal behavior that we will describe later.

PREPARE
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Fig. 8 Relative frequency of common behaviors
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students seem to principally be concerned with actions that are either explicitly or
implicitly indicative of preparing to actually build. The fact that a large proportion of
segments is spent doing PREPARE indicates that even though the focus of the activity
is geared towards Bmaking,^ many students are engaging in reflective processes that
help them think about how best to complete the task. Furthermore, since several of the
Btest segments^ are PREPARE segments, students are likely using PREPARE through-
out the process.

The third cluster, ADJUST, is characterized by above average c-modify, and below
average c-plan and c-realize. The behavior’s average c-modify value is approximately
one standard deviation above the mean value for the entire population of Btest
segments^.

This indicates that when using this Btest segment^ students are spending a signifi-
cant proportion of their time adjusting their structure, but may also occasionally spend a
portion of the Btest segment^ doing nothing, or undoing. This, again seems reasonable.
Based on observations made during data collection and video annotation, making
adjustments to a structure was a fairly common activity. As can be seen from Fig. 8,
ADJUST is nearly 20% of all Btest segments^ across all users.

An above average proportion of c-modify actions also characterizes the fourth
cluster. However, whereas the ADJUST cluster involved c-modify values that were
one standard deviation above the mean, SIGNIFICANTLY ADJUST has c-modify
values that are closer to two standard deviations above the mean. To compensate for
this increase in the proportion of time spent modifying, the proportion of time spent in
c-realize, c-plan and c-nothing are all well below average. In this case it appears as
though these Btest segments^ are typified by students only making adjustments to their
structures. Again, based on personal observation, this seems like an accurate charac-
terization of several Btest segments^ as some students tried to make their structure work
without a clear sense of how to do so. Because the focus almost exclusively resides in
c-modify, we call this cluster SIGNIFICANTLY ADJUST. Ten percent of the Btest
segments^ were grouped into this cluster.
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Process Similarity Comparison

Recall that the process similarity comparison groups students based on the pair-wise
similarity of their processes. This particular metric maintains the order that each student
completes each action, at the Btest segment^ level. Figure 10 shows the results of
grouping students based on their process similarity, with a focus on comparing the
number of student from each condition assigned to a given group.

Seven students from the principle-based condition were assigned to Group A, while
the remaining three were assigned to Group B. For the example-based condition, three
students were assigned to Group A, while the remaining five were assigned to Group B.
According to a binomial test, there is approximately a 12% chance of this, or a less
frequent split, happening at random. In addition to looking at experimental condition,
we also examine how Group A and Group B differ in terms of success (Fig. 11).

Comparing Group A and Group B based on success rates produces a much clearer
distinction. Seven of the ten students assigned to Group A succeeded on the activity,
whereas only one of the eight students in Group B succeeded on the activity. The
likelihood of this happening at random is less than 2%, suggesting that there were
substantive process based differences between successful and unsuccessful students
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when considering their actions. To explore these differences more deeply, we now
proceed to compare cluster frequency usage.

Comparing common behavior usage takes on two forms. At the most general level,
it involves aggregating cluster frequency across the entirety of each student’s process.
However, in order to provide a more fine-grain comparison, we also look at cluster
usage in the first, second, and third portions of each student’s process.

Coarse-Grain Cluster Usage Comparison

Figure 12 shows the median cluster frequency usage for the example-based and principle-
based conditions. Themost pronounced differences between the example-based condition
and the principle-based condition is in the IMPLEMENT cluster. The principle-based
reasoning conditionmakes significantly more (p = 0.017) use of the IMPLEMENTcluster
than their peers in the example-based reasoning condition. They also make less (p < 0.001
(8.5 × 10−5)) use of SIGNIFICANTLY ADJUST. These are the only dimensions for
which there are statistically significant differences between the two conditions.

Figure 13 contains the same analysis, but now with success as the dependent
variable. The most pronounced differences appear to be in the IMPLEMENT,
ADJUST and SIGNFICANTLY ADUST categories. However, tests of statistical sig-
nificance reveal that there are statistically significant differences in IMPLEMENT
(p = 0.017) and SIGNIFICANTLYADJUST (p = 0.017).

Finally, for the analysis of learning, we find that students who learned more spent
relatively more time in IMPLEMENT (Fig. 14). When we compare students with
positive learning scores, with those receiving negative learning scores, we find a
statistically significant difference (p = 0.0019). Again there is a trend that students
who spend more Btest segments^ in IMPLEMENT spend fewer Btest segments^ in
ADJUST and SIGNIFICANTLY ADJUST, but still spend approximately the same
number of Btest segments^ in PREPARE.

The coarse-grain analysis supports the hypothesis that students significantly
differed in their processes when comparing experimental condition, success and
learning. However, the coarse-grain analysis provides little in the way of describ-
ing where those differences are occurring and whether or not there is any causality
in what is observed. To address this, the following section features a fine-grain
analysis of cluster frequency usage that splits each student’s process into three
equally-sized parts.

Fine-Grain Cluster Usage Analysis

A fine-grained analysis indicates that there are no significant differences between the
two conditions. While there are places that have noticeable differences, those results are
dropped after post-hoc analysis with Benjamini-Hochberg.

The fact that this particular algorithm appears to primarily be distinguishing suc-
cessful students from unsuccessful students is reiterated through a fine-grained analysis
of cluster usage. Specifically, there is a statistically significant difference (p = 0.0004)
between successful and unsuccessful students in the amount that they use
IMPLEMENT during the first third of the activity. Successful students were more
likely to use IMPLEMENT, whereas the unsuccessful students were more likely to be
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in ADJUSTor PREPARE. Apart from IMPLEMENT usage in the first third, there were
no differences between successful and unsuccessful students.

Much like the case of condition, the fine-grained analysis did not identify any
statistically significant differences between students who received positive post-test
scores, and those who received negative post-test scores.

Discussion

In this section we have presented results that confirm the hypothesis that student
processes differed along several dimensions for the principle- and example-based
experimental groups. We began by discussing the four common Btest segment^ types.
These were termed PREPARE, IMPLEMENT, ADJUST and SIGNIFICANTLY
ADJUST. We then moved on to show that the process similarity comparison yielded
weakly significant results when comparing between experimental conditions. However,
when looking at success rate, the process similarity metric did substantially better. We
then proceeded to analyze how the cluster usage frequency data could be used to describe
the differences observed in the process similarity metric. The coarse-grain analysis found
that increased usage of IMPLEMENT correlated with success, learning and the
principle-based reasoning experimental condition. In interpreting this information it is
important to recall that segmentation was based on when students tested and not based
on the total amount of time spent on the task. Hence any attempt to argue that students
spent more time in a given activity is not the appropriate inference to be made. Instead
the results should be thought of in terms of the proportion of a students’ test segments
that were spent in a given activity, recalling that these can be of variable length.

Moving to the more fine-grain analysis provided additional insight into how success-
ful and unsuccessful students differ in how they start the activity. Namely, successful
students were likely to spend more of the first-third in IMPLEMENT, than unsuccessful
students. That said, even though the coarse-grain analysis consistently reported that usage
of IMPLEMENT was important, the analysis, on the whole still leaves many questions
about why the two experimental conditions significantly differed from one another.

Part 2: Multimodal Analysis of Learning, Success and Strategies

In Part 1 of this article we used hand-annotated data to pinpoint differences in how
students enacted the engineering design process. In Part 2, we transition into using
automated multimodal sensor data. This multimodal data includes audio, hand/wrist
movement and electro-dermal activation. Whereas the analysis in Part 1 included the
semantics of each user’s actions, the analysis in Part 2 will take a purely behavioral
approach, but leverages multiple data streams in order to better capture the context in
which each piece of data is recorded. This has commonly been a justification for
undergoing multimodal analysis. Furthermore, prior research has studied how student
posture and audio can be used as indicators for inferring student epistemological frames
(Elby and Hammer 2010; Hutchison and Hammer 2009; Russ et al. 2012; Scherr and
Hammer 2009). Accordingly, in this analysis we will examine student behavior at a
similar level of granularity and identify the amount of audio, hand/wrist movement and
electro-dermal activation that students generate at different points in time.
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Common Behavior Analysis

Figure 15 shows the relative frequency of each of the characteristic Btest segments.^
Again, the labels will be more understandable following the discussion of each
common behavior and their accompanying graphical representations which are sum-
marized in Fig. 16.

The most common segment, which we call ENGAGED, is characterized by near or
below average behavior across all three variables: audio, hand/wrist movement and
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Fig. 15 Relative frequency of common behaviors for Part 2
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electro-dermal activation. When examined in comparison to the other common behav-
iors (Fig. 15), ENGAGED is the most balanced, with no individual modality signifi-
cantly dominating the others. This cluster represents roughly 60% of all Btest segments^.

As we compare the usage across conditions, rate of success and quality of learning,
the argument for calling this category ENGAGEDwill become clearer. For now, suffice
it so say that this cluster represents the vast majority of all Btest segments^, and that it is
typified by average stress, average movement and little speech. One can picture
students in ENGAGED concentrating on the task by carefully manipulating the
materials without the need for extended discussion, movement or arousal.

The second most frequently occurring Btest segment^ is one that we have entitled
ACTION. This behavior primarily consists of segments in which students use above
average hand/wrist movement.

What’smore, though, is that this occurs in the absence of high electro-dermal activation,
which is normally correlated with body movement. An additional point of interest is the
lack of audio associated with this behavior. Students are focused on building and refraining
from extensive discussion with one another. Accordingly, one might conjecture that the
students are findings other means through which to communicate with one another.

After ACTION, the most frequently occurring state is TALK. This particular cluster
represents approximately 18% of all Btest segments.^

The amount of audio in this cluster is approximately two standard deviations above
the mean. Hand/wrist data is just above the mean, and electro-dermal activation is
nearly half a standard deviation below average. Again, this is analogous to ACTION in
that students appear to only engage one of the multimodal behaviors at a given time.

The final cluster is one that we call STRESS. This behavior is characterized by extremely
large values of electro-dermal activation, as well as above average hand/wrist movement.

As mentioned before, one would expect for electro-dermal activation and hand/wrist
movement to correlate with one another. Hence we can anticipate that the electro-
dermal activation values may be slightly inflated, but are still, more than likely, well
above average. On the other hand, that the students are stressed, may be causing them
to work more frantically, which would result in an increase in hand/wrist movement.
STRESS accounts for approximately 10% of students Btest segments^.

Process Similarity Comparison

Before discussing the specifics of the process differences, we first present results from
grouping students based on the similarity of their processes. Process similarity was
based on the two participant clusters created from the pair-wise comparison of student
sequences. Seven of the eight students assigned to Group A are from the principle-
based condition. The inverse pattern is observed for Group B, with seven of the eight
individuals in that group coming from the example-based reasoning condition (Fig. 17).
The likelihood of this happening randomly is less than 0.003, suggesting that the two
conditions did, in fact, utilize markedly different processes.6

6 One question is if these results are being inflated by the dyadic nature of the task. For example, two
individuals that work together are likely to mirror each other’s behavior. When we do an analysis to determine
how frequently a given student’s process is most similar to that of their partner, we find that this is only the
case for two of the eight pairs, and if we remove the partner from consideration, that student is still likely to be
most similar to another individual from the same experimental condition.
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Having observed that there are salient differences between the processes that the two
conditions use, as determined through multimodal data, we now consider the nature of
those differences. As in Part 1, we examine cluster usage at coarse- and fine-grains.

Coarse-Grain Cluster Usage Analysis

Figure 18 shows the median normalized frequency of cluster usage by experimental
condition. From the figure it is apparent that the median value for ENGAGED is quite
different between the two conditions.

A test of statistical significance confirms that students in the principle-based rea-
soning condition were more frequently (p = .0098) in ENGAGED than their peers in
the example-based reasoning condition. No other statistically significant differences
emerged between the two groups when comparing their cluster frequency.

In terms of success, there are no statistically significant differences in terms of
cluster, or behavior, usage (Fig. 19). Much like the case of success, the data does not
reveal any significant differences between students who experienced positive learning
and negative learning gains (Fig. 20).

Fine-Grain Cluster Usage Analysis

A fine-grained analysis indicates that there are significant differences between the two
conditions during all three portions of the activity. Students in the principle-based
reasoning condition are more likely to be in ENGAGED for the first (p < 0.001
(2.2 × 10−5)) and third (p = 0.0097) thirds, than their peers in the example-based
reasoning condition. This suggests that the two conditions differed at all three stages,
but that the greatest divergence occurred during the first portion of the activity. In
particular, many of the students from the example-based reasoning condition primarily
spend the first third of the activity in ACTION. In a later section, we discuss the
implications of this in more detail.

The fine-grained analysis did not identify any significant differences between
successful and unsuccessful students in terms of how frequently they used the different
clusters, or common behaviors.
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The fine-grained analysis did indicate that students that learned more through the
activity were more likely be in ENGAGED during the first third of the activity.
Specifically, the students that received positive post-test scores were much more likely
(p < 0.001 (0.0005)) to use ENGAGED than students who received a negative post-test
score. This trends continues among the students that received a score of zero, but not at
a statistically significant level.

Discussion

In deciphering the differences between the principle-based reasoning condition and the
example-based reasoning condition, the current multimodal analysis offers a significant
improvement beyond the analysis from Part 1. Specifically, this particular analysis
included statistically significant differences in the process similarity metric between the
experimental conditions. Furthermore, both the coarse-grain and fine-grained analyses
offered some additional insight into identifying the elements of each condition’s
process that differed. The coarse and fine-grained analyses showed that students in
the principle-based reasoning condition made more extensive use of ENGAGED than
students in the example-based reasoning condition. That difference emerged during all
three portions of the activity and was most pronounced during the first third. This is
telling because it indicates that the differences were not merely the result of students
being more or less successful on the activity. In fact, this analysis did not reveal any
differences between successful and unsuccessful students at any grain size. Instead, the
only other difference was observed from the learning metric. Once again, ENGAGED
was positively correlated with student learning.

Realizing that the analyses from Part 1 and Part 2 provided different benefits, in Part
3, we will examine the merits of combining the two approaches with the hope of
identifying differences along all three metrics: experimental condition, success and
learning.

Part 3: Combined Analysis

Part 1 leveraged semantic-level descriptions of each student’s actions as the means for
exploring the hypothesis that processes significantly differed. This analysis concluded
that the use of IMPLEMENT was positively correlated with success, learning and the
principle-based reasoning condition. However, grouping students based on their pro-
cesses only yielded significant results in terms of success, and didn’t have a strong
correlation with experimental condition. In Part 2, we presented an analysis that
involved automatically-derived, behavioral data. This analysis effectively distinguished
between students from the different experimental conditions, based on their differential
usage of ENGAGED. ENGAGED was also important for predicting student learning.
Additionally, the process similarity metric confirmed these results by creating two
groups that almost perfectly align with the two experimental conditions. However,
the analysis did not provide much in the way of determining the behaviors associated
with success. Having garnered different benefits from each analysis, one can’t help but
wonder if combining approaches would provide the quintessential multimodal analysis.
Thus, in Part 3 we combine data from Part 1, with data from Part 2 in an effort to push
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the limits of multimodal analysis, and explore the possibility of generating results that
highlight differences in condition, success and learning.

The data for this analysis includes an eight dimensional vector (c-plan, c-realize, c-
modify, c-revert, c-nothing, audio, hand/wrist movement and electro-dermal activa-
tion). As before, we begin by presenting the most common clusters of behavior among
the population of research participants.

Common Behavior Analysis

In describing the clusters, we used names that make reference to the cluster names in
Part 1 and Part 2, where appropriate. Figure 21 and Fig. 22 contain the relative
frequency and characteristics of each behavior, respectively. As before, the following
paragraphs will be used to describe each of the common multimodal behaviors.
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Fig. 21 Relative frequency of common behaviors for Part 3
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The first cluster that we describe is the IMPLEMENT-ACTION cluster. This cluster
represents 37% of all Btest segments^ and is typified by significant c-realize, slightly
above average hand/wrist movement and slightly above average c-revert.

Values for c-plan, electro-dermal activation and audio are also approximately aver-
age, while values for c-nothing and c-modify are generally below average. We interpret
this data as being associated with students actively working towards physically com-
pleting their structure. Above average c-realize very clearly keys the reader into this
fact. The additional modalities measured then provide insights into the other behaviors
associated with project implementation, namely, hand/wrist movement.

The second most frequent cluster that we describe is the PREPARE-ACTION cluster
which constitutes 17% of all Btest segments.^ Much like the PREPARE cluster in Part
1, this cluster is characterized by above average c-plan. However, it differs in that c-
nothing is not associated with this particular behavior. Furthermore, there is greater
hand/wrist movement associated with PREPARE-ACTION than for IMPLEMENT-
ACTION. This runs contrary to the initial assumption that ideating about one’s project
does not require extensive hand/wrist movement. In this case, the students use more
body gestures while planning than while engaging in IMPLEMENT-ACTION. All of
the other values are well below average for this common behavior. In particular, this
cluster is associated with the lowest average value for c-modify. Because one would not
expect for a student to make changes to their structure while in the planning phase, this
result seems reasonable.

The third cluster is REST-TALK. As the name implies, it is associated with students
appearing to be fairly static (high c-nothing) and occasionally engaging in dialogue.
This behavior has the highest average audio value and the lowest hand/wrist movement
value. As such, combining the data streams provides a new way to think about the
multimodal behaviors associated with planning and appearing to do nothing. It also
offers validation that the coding of the Object Manipulation Classes was consistent.
Specifically, c-nothing is associated with below average values of hand/wrist
movement.

The final behavior is ADJUST-STRESS. This behavior accounts for 22% of all Btest
segments.^ Recall that the previous analyses contained two behaviors associated with
adjusting (ADJUST and SIGNIFICANTLY ADJUST) and one associated with high
electro-dermal activation (STRESS). In combining the two analyses, one of the common
behaviors that emerges lies at the intersection of the previously identified behaviors (from
Part 1 and Part 2). Amidst this common behavior, the student is unlikely to participate in
c-plan, c-nothing or c-realize, and is instead focused on modifying their design.

Process Similarity Comparison

Despite the increased contextualization afforded through the combination of multimod-
al sensor data and the hand-coded data, the results of a process similarity analysis are
less than stellar. Group A consists of five students from the example-based reasoning
condition, and four from the principle-based reasoning condition. The remaining seven
students are in Group B (Fig. 23).

We also observed a lack of differentiation when comparing successful students with
unsuccessful students (Fig. 24). Similarly, the process similarity metric results do not
align to student learning scores. From this standpoint, combining the data streams did
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not produce the desired result. By all accounts this provides a good indication that
embarking upon this line of analysis may be less fruitful than the two individual
analyses in Part 1 and Part 2. Even so, as an exercise in completeness, we still use
the upcoming sections to investigate coarse- and fine-grain differences in common
behavior usage.

Coarse-Grain Cluster Usage Analysis

A coarse-grain analysis of cluster usage between conditions suggests that there are no
differences between the two conditions (Fig. 25). The median value for ADJUST-
STRESS and PREPARE-ACTION appear to be markedly different between condi-
tions, but these differences aren’t statistically significant. This lack of results is
somewhat surprising given the consistent results observed in Part 1 where the
IMPLEMENT state was associated with success, learning and the principle-based
reasoning condition. Here IMPLEMENT-ACTION occurs at equal rates between
conditions. One potential implication of this finding is that students enact
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Fig. 23 Composition of groups based on experimental condition as derived from process similarity for Part 3
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IMPLEMENT differently within each condition. Since adding hand/wrist movement
distorted the IMPLEMENT based differences between conditions, one can infer that
students in the principle-based reasoning condition likely completed more
IMPLEMENT in the context of smaller scale hand/wrist movements – this result
follows from the previous observation that students in the principle-based reasoning
condition spent more time in ENGAGED which was characterized by lower wrist/
hand movement. In this sense, IMPLEMENT may not be enacted in the same way
across conditions.

Considering success, there are statistically significant results for usage of ADJUST-
STRESS (Fig. 26). Successful students are less likely (p = 0.0097) to use ADJUST-
STRESS than unsuccessful students. This finding differs from that observed in Part 1
for the ADJUST behavior. In Part 1, ADJUST was not associated with any significant
differences. In this case it appears as though adding the additional context of multi-
modal behavioral data creates a more complete picture of what students are experienc-
ing. For success, there were no statistically significant differences along the other three
common behavior types.

Finally, like success, learning also negatively correlates with ADJUST-STRESS
(Fig. 27). Students that received positive post-test scores are less likely (p = 0.006) to
use ADJUST-STRESS than students that received negative scores on the post-test.

Fine-Grain Cluster Usage Analysis

Consistent with the coarse grain analysis, the fine-grain analysis does not reveal any
statistically significant differences between the two conditions. This is somewhat
expected given that Part 1 did not garner differences in fine-grain cluster usage, nor
did the coarse-grain analysis. Furthermore, the common behaviors from the combined
data did not contain an analog to ENGAGED which characterized principle-based
reasoning in Part 2.

Comparing fine-grain cluster usage between successful and unsuccessful students
expands the set of dimensions on which students differed. Specifically, successful
students were more likely (p = 0.0097) to use IMPLEMENT-ACTION and less likely
(p = 0.0097) to use ADJUST-STRESS during the middle and final thirds, respectively.

Finally, students with positive post-test scores were less likely (p = 0.0097) to
use ADJUST-STRESS in the final third of the activity than students with negative
post-test scores.

Discussion

This analysis was intended to combine the benefits of the hand-coded analysis, in terms
of cluster usage, with the increased precision, and process-oriented distinctions associ-
ated with the multimodal sensor data. However, this approach failed to harness the
benefits of either of the previous analyses, and, instead, provided useful insights on a
different dimension. That this analysis did not produce the desired outcome was evident
from the results of the process similarity analysis. These results failed to align with
success, learning or experimental condition. Despite these shortcomings, this combined
analysis did reveal a methodology for predicting student success and learning. In
particular, coarse- and fine-grained cluster usage analyses found that ADJUST-
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STRESS was negatively correlated with success and learning. While one would
theoretically anticipate that students who have not succeeded or learned, would expe-
rience stress as their time begins to expire, and that they would resort to trying
extensive adjusting in order to cope with the pending failure of their structure; having
a computational tool to detect this has practical utility for supporting constructionist
learning environments.

Nonetheless, the real benefit of this analysis comes, in part, through the ability to
more closely understand the nuances of multimodal behaviors. For example, one such
finding is drawn from taking the results of Part 3 in relation to those of Part 1. In Part 1,
IMPLEMENT was associated with principle-based reasoning, positive learning gains,
and success. However, when IMPLEMENT was put in the context of hand/wrist
movement (i.e. IMPLEMENT-ACTION), the differences identified in Part 1 vanished.
It therefore followed that the gestural enactment of IMPLEMENTmay have differed by
experimental condition, success and post-test score. One interpretation of this differ-
ence is that the two experimental conditions differentially impacted the rates of
epistemic and pragmatic actions (Kirsh and Maglio 1994). Epistemic actions are
described as modifications to a system or an environment that help uncover information
that may be hard to compute mentally. These epistemic actions are in contrast to
pragmatic actions which are necessarily focused on physically moving the participant
closer to their goal state. The combined multimodal analysis introduced the possibility
that students are using building actions in different ways.

In addition to offering important insights into the nuances of multimodal behaviors,
the fact that this analysis did not combine the affordances of the two previous analyses
is informative. More specifically, this unexpected result highlights important aspects
and considerations about the nature and complexities of conducting multimodal learn-
ing analytics research that would be sorely overlooked had we excluded the combined
analysis.

Conclusion

This article began with an appeal to think more broadly about how to describe when a
given learning strategy is effective. We analyzed strategy efficacy in relation to
structural success and learning. Previous work had identified clear indications that
principle-based reasoning yielded more favorable results than example-based reasoning
(Worsley and Blikstein 2014b). Having seen the benefit of principle-based reasoning
across metrics, we raised questions about what is mediating these differences.
Particularly we were interested in determining the practices associated with principle-
based reasoning, and suggested that leveraging multimodal data could provide a means
for conducting such an analysis.

Based on this assumption we proposed a general algorithm that allowed us to (1)
identify common multimodal behaviors, (2) conduct pairwise process comparisons that
maintained the temporal elements of the data and (3) get a glimpse of the different
behaviors used by different groups (in terms of experimental condition, success and
learning). We conducted three analyses using the same general algorithm. The first
analysis utilized human generated time-stamps of individual actions based on a coding
scheme from prior work (Worsley and Blikstein 2013, 2014a). From this analysis, we
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learned that students that spent more of their Btest segments^ implementing their ideas
were more successful, learned more, and were more likely to be from the principle-
based reasoning condition. In this light, one could argue that this supports the current
Bmaker^ practice of encouraging students to tinker at the expense of thinking. But we
would suggest that perhaps the direction of causality is more in line with the idea that
the principle-based reasoning condition enabled students to spend more time in
implementation and less time in adjusting, and that this mediated student success and
student learning. Put differently, without the initial focus on principles during the
intervention, students would not have been able to engage in sustained implementation.
However, this level of causality cannot be determined based on the current analysis.
Nonetheless, even without being able to establish causality, this analysis revealed a
student practice that bore significance across all three metrics of interest. At the very
least, then, this form of analysis can be used for producing predictions. One shortcom-
ing, though, was that the pair-wise process comparison was more closely aligned to
success than to experimental conditions.

Given that a primary focus of these analysis was to uncover the practices that
distinguish principle-based reasoning from example-based reasoning, we conducted a
second analysis based on automatically derived data from various multimodal sensors.
These data streams included audio, hand/wrist movement and electro-dermal activa-
tion. This second analysis produced much higher predictive accuracy for distinguishing
between the two experimental conditions based both on the cluster frequency usage and
when conducting the pair-wise process similarity comparisons. Specifically, students
who made more extensive use of a behavior pattern that we called ENGAGED, were
more likely to be from the principle-based reasoning condition. ENGAGED was also
associated with better performance on the post-test. However, this analysis was unable
to identify distinctions among students whose structures were of different levels of
stability. This lack of correlation with success is significant, because it means that
students in the principle-based reasoning condition remain in ENGAGED even though
they may not have been successful. Hence, one cannot make the argument that
deviation from ENGAGED was merely the result of students experiencing challenges
with their structures. Nor can one make the argument that it was only more
knowledgeable students that were likely to remain in ENGAGED, as the correla-
tion between learning and ENGAGED only emerged during the final third of the
activity. In summary, then, the two sets of data seemed to offer complementary
benefits. As such, Part 3 of this article combined the data sets. This combination
produced clusters that were far less predictive than the two previous analyses. The
analysis did, however, provide common associations that exist between the
human-coded data and the multimodal behaviors, and in this way served as
additional validation for the human coding. Additionally the analysis uncovered
important nuances of multimodal behaviors. Furthermore, the shortcomings of the
process similarity results from the final analysis motivate a later discussion of
overarching concerns and considerations that one must account for when
conducting multimodal learning analytics research.

Looking across analyses, there are clear instances where each provided some novel
insights. In this sense, the overall algorithm appears to have relevance for studying
learning, success and experimental condition; but honing in on these correlations
requires different modes of analysis.
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As a whole this article has shown that success, learning and process are not
equivalent, though they may occasionally overlap. Thus, when thinking about
measuring the effectiveness of a given learning environment it is important to
be clear about which metrics one hopes to optimize. At the same time, this article
has provided additional evidence that experimental condition can have an impact
on learning, success and process. Because of this, one has to be cognizant about
how to develop learning and reasoning approaches that allow the environment to
realize the desired outcomes.

Finally, the three analyses provided evidence that multimodal analysis can provide a
means for studying effective practices. Furthermore, they contribute to the argument
that conducting research in constructionist environments likely necessitates adopting
non-traditional modes of assessment. Reverting to traditional, uni-modal, outcome-
based assessments will belie the goals of constructionist learning. For example, the
results from Part 2 made this clear by showing that students spent most of their time in
ENGAGED, a behavior that was characterized by a combination of multimodal
behaviors. As a result, there is a need to embark on data analysis techniques that go
beyond the current strategies used for studying and assessing Bmaking^ and, espouse
approaches that provide a broader perspective on learning, and that take a much more
multimodal perspective. At the same time however, Part 3 demonstrated that simply
concatenating different forms of data does not guarantee a successful analysis. This
should not be taken to suggest that multimodal learning analytics does not have utility
for advancing the field. On the contrary, all three computational analyses make it
evident that multimodal analysis has considerable merit. One simply needs to use care
in ensuring alignment among methodology, data fusion and hypotheses.

Finally, despite our focus on Bmaking^ as the context of study, we argue that the
analyses presented here likely have applicability across a broader set of learning
environments. Moreover, these approaches could be used to study other elements of
a given learning environment. For example, one could study correlations between
teaching practices, or the physical design of a learning environment and student
engagement. As we saw from the work of Scherr and Hammer (2009) and Kress
et al. (2001), student learning experiences are often typified by multimodal behaviors.
Fortunately, artificial intelligence and machine learning offer great promise in taking a
multimodal perspective.
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