
Examining the Realities and Nuances of 'Low-stakes'
Interest-Driven Learning Environments

Marcelo Worsley
Northwestern University

Evanston, IL USA
marcelo.worsley@northwestern.edu

Abstract—The push to develop low-stakes and personally

meaningful computer science experiences is creating novel
opportunities to broaden participation in CS. These opportunities
have become increasingly present across contexts and have
expanded the possibilities for introducing and sustaining student
participation in computing. However, while these experiences tend
to be effective ways for engaging new participants and new forms
of participation, we must be careful to not overlook how 'high-
stakes' these experiences might be for learners. To explore this
tension, this paper describes two case studies of students engaging
in coding and computational thinking with Minecraft Education
Edition. The first case study involves a 7-year-old Black and
Latina girl who experiences significant frustration when her
computer program destroys significant portions of her project.
The second is from a Latino boy who avoids using the coding
capabilities in Minecraft EDU out of fear that the code might not
work properly. Building on these case studies, this paper suggests
that the field take steps to ensure that the language and actions
associated with low-stakes and high-stakes are reflective of learner
perceptions, and that we design learning experiences that
appropriately reflect this nuance.

Keywords— Game-based learning, Informal, Formal, Pedagogy

I. INTRODUCTION
Education researchers have long advocated for interest-

based learning experiences [1]. These experiences build on
learner goals, identities, and interests to foster increased student
motivation [2]–[4]. When initially conceptualized, much of
these experiences were implemented in schools [1], [5], [6]. In
recent years, interest-based learning has experienced a
noticeable resurgence with a noted expansion into informal
learning environments [7]–[11]. Researchers and educators have
developed initiatives that bridge learning and games [10]–[13],
cooking [14], music [15], [16], physical movement [17]–[19],
art [20] and the environment [21], for example. These informal
spaces can provide an engaging entry point to science,
technology, engineering, and mathematics (STEM) disciplines
and serve as a counterpoint to the emphasis that schools and
school districts may place on standardized tests. However,
despite the tendency for interest-based learning to offer a more
engaging alternative, we should also recognize the potential high
stakes nature that these experiences might embody for youth.
This paper explores this idea by examining the following
research question: In what ways do youth demonstrate the
possible high stakes nature of interest-based learning in a game-
based learning environment?

In answering this question, we first turn to describing prior
literature from the interest-based learning and computer science

education research communities. We then describe the context
for this study and move into a presentation of two case studies
from different game-based learning experiences. Next, the
discussion section offers some key takeaways from the case
studies and describes possible implications that this work might
have outside of the game-based learning context. Finally, the
conclusion highlights future directions for this work, and
additional questions that the research community might consider
in the context of interest-based learning environments.

II. PRIOR LITERATURE

A. Frameworks of Interest-Based Learning

While seldom referred to as interest-based learning in
contemporary education research, Nasir’s [2] model for the
interactions among learning, goals, and identity serves as an
important grounding as we think about interest-based learning.
Nasir describes bi-directional interactions among a learner’s
identity, learning, and goals as facilitating interest-based
learning. Learners may have certain goals, based on their
identity, that subsequently push them to embark on new learning
experiences. Similarly, as they achieve their goals and succeed
at learning, they grow their identities within that specific
domain. As we look through the case studies in this paper, we
will see some of these interactions among our participants’
goals, learning, and identity.

B. Culturally Responsive-Sustaining Computer Science

A growing number of scholars are exploring ways to
incorporate and elevate learner identities in the context of
computer science. Much of this work falls under the banner of
culturally responsive-sustaining computer science education [7],
[20], [22]. Importantly, these approaches are about more than
simply motivating youth to learn computer science. Instead,
these initiatives demonstrate ways that computing might
contribute to learner’s appreciation, awareness, and engagement
with their culture. The learning context that we describe in this
paper takes a similar approach by helping students see ways that
computation can support their process for designing and
building in a game-based learning environment.

C. Guidelines and Best-Practices for Game-based Learning

Finally, this paper is informed by prior research on game-
based learning. One area of game-based learning research uses
youth interest in games as a primary motivation for exploring
computational thinking. Some game-based learning
environments require students to program an avatar’s actions, or
solve different types of puzzles, while other platforms provide
more open-ended virtual sandboxes. In this project, youth are

45

2022 Conference on Research in Equitable and Sustained Participation in Engineering, Computing, and Technology (RESPECT)

978-1-6654-7114-5/22/$31.00 ©2022 IEEE
DOI 10.1109/RESPECT55273.2022.00016

invited, though not required, to learn different computational
thinking concepts through Minecraft Education Edition (EDU).
Many aspects of the platform align with Gee’s guidelines for
game design [23]: co-design, customizations, identity,
manipulation and distributed knowledge, well ordered
problems, pleasantly frustrating, cycles of expertise, skills as
strategies, information “on demand” and just in time. These
principles provide a useful backdrop for thinking about youth
experiences within game-based learning environments. In
particular, we see how the principles of just in time, pleasant
frustration, and skills as strategies effect identity and learning
within our two case studies.

III. METHODS

A. Program Participants and Contexts

The author has worked with a suburban school district to
provide in-school and out-of-school game-based learning
experiences using Minecraft EDU for the past few years. This
partnership has included creating and implementing after-school
clubs, training teachers how to use Minecraft in their classes,
supporting summer programs for youth, and facilitating district-
wide Minecraft challenges. In total, the research team has
worked with more than one thousand students and 15 educators.
Within this paper we take a close look at two student experiences
in these programs. The participants were selected because they
offer prime examples of how youth may experience aspects of
an interest-based activity as high stakes. At the same time, the
difference in age and context also provides some indication that
their experience is not strictly tied to one type of learning context
or the other. While we are not suggesting that these students’
experiences are the norm, we have noted similar interactions
among other individuals in their respective peer groups. Data for
each case study is based on direct interactions between the
research team and the students. During the different programs,
the research team generated field notes and memos that inform
this analysis. We also conducted interviews with some
participants and parents after the conclusion of the programs.

B. Background on Minecraft Education Edition

Minecraft is a virtual sandbox game that remains immensely
popular among elementary and middle school students. In the
game, players utilize blocks of different materials to construct
buildings, powered machines, and entire worlds. Over the last
decade, educators and researchers have utilized the game for
many educational purposes [13], [24]–[28]. As interest in
Minecraft grew, Microsoft decided to create a version of the
game that was specifically designed to support learning and
teacher management. This version, Minecraft EDU, includes the
ability to conduct chemistry experiments and explore
professional worlds that replicate historic locations and align to
various curricular standards. Minecraft EDU also includes an
embedded programming environment where students can
programmatically interact with or modify their virtual world.
Using the coding interface, students can gain exposure to and
develop expertise with variables, conditionals, functions,
iteration (loops), decomposition, debugging, problem solving,
collaboration, and many other computational thinking related
constructs. Many of these are natively available through
Minecraft but are simplified through the embedded
programming environment. Youth participating in our programs

are introduced to many of these capabilities but are not required
to utilize them. Our programs also teach participants how to use
scripting in Minecraft EDU. This capability gives participants
familiarity with a set of commands that they can use within the
in-game chat terminal, or within command blocks. The specifics
of these coding interfaces is not essential for understanding the
case studies. Instead readers should understand that Minecraft
EDU involves several components that can be used to support
computational thinking and computer programming.

IV. CASE STUDIES

A. Amelia

Amelia is a gregarious seven-year-old Black and Latina girl
who attends a title one school in the Midwestern region of the
United States of America. Amelia does not identify as a gamer,
but occasionally enjoys playing games like Animal Crossing
New Horizons, Mario Kart, and Super Smash Brothers on the
Nintendo Switch. Amelia is quite social and enjoys playing with
other girls her age. Amelia signed up to participate in a 6-week
Minecraft after-school club that met once per week during the
winter term. The club included 15 students from Kindergarten
through 2nd grade. Each grade had roughly the same proportion
of participation, and the participants met with three members of
the research team on a weekly basis in an open classroom. The
club was majority Black and Brown, and had boy-girl gender
parity. The original six-week program was disrupted by the
COVID-19 pandemic, but a four-week summer session was
offered during the summer of 2020.

The specific episode that we will focus on with Amelia took
place in the summer of 2020. Amelia, and many of the other
after-school club participants, were excited to continue working
with Minecraft after their after-school program abruptly ended
because of COVID-19. Over the course of 4 weeks in July, the
participants collaboratively created a treehouse amusement
park. In the process of creating the amusement park, the research
team showed the students different coding capabilities in
Minecraft. Of particular interest to Amelia’s example is a piece
of code called Super Digger. This code can be created within the
Minecraft EDU block-based programming environment and
allows the user to quickly destroy anything within a specified
distance from the player’s location. It is referred to as Super
Digger because the code can greatly simplify the process of
excavation. We had introduced the Super Digger code to assist
us in destroying structures that we had created with errant or
otherwise faulty code. Amelia used the Super Digger code with
assistance on a few different occasions. On one particular day,
Amelia was individually working in a world that she was
enhancing when she came across a pre-built structure that was
blocking the area where she wanted to build. She wanted to clear
the space and turned to the Super Digger code. The first time she
tried it did not work. She tried again, but with the same result.
With the help of a research team member, Amelia realized that
she was not using the correct event handler. She had
programmed the Super Digger to work while walking, instead
of while flying. They helped her update her code and left her to
try running the code. Moments later she resurfaced visibly upset.
The Super Digger code had worked, but she had destroyed more
of the space than intended. After some discussion we decided to
reload the original world. She remade her changes to the original

46

world, reloaded the code from the previous world, and
proceeded to clear out the space as desired. Unfortunately, after
a minute or two, she was once again distraught. She had started
the code, but was unable to make the code stop running. As a
result, she had destroyed the very structure that she was trying
to extend. Even as she talked with the researchers, her player
was continuing to fly around, inadvertently destroy everything.
As this continued, Amelia remarked that she was giving up on
Minecraft. She refused to try building the structure again. She
was convinced that she could not do it properly using the code
but was equally convinced that doing it manually was a poor use
of time given her knowledge of the code builder. Amelia held to
this refusal to play Minecraft for the next several months. While
her friends would occasionally get together to play in a shared
world, Amelia opted out. Roughly one year later she decided to
give Minecraft a try once again and has not returned to using the
code builder ever since. She will still use different text chat
commands for teleporting and changing the time of day, but the
code builder remains an object of scorn.

 One interpretation of Amelia’s experience is that it failed to
satisfy Gee’s pleasant frustration guideline. She made multiple
attempts to utilize the code builder, but to no avail. Instead of
being an experience where she could leverage computer science
to improve her Minecraft world, she became detached from both
coding and Minecraft. One might also interpret Amelia’s
experience as an instance where the challenges she encountered
put her identity as somewhat Minecraft proficient into question.
In the same way that Nasir talks about identity, learning, and
goals working in concert with one another, one can equally
consider that negative experiences in one dimension, might
disrupt the others. In this case, the code builder was actively
detracting from Amelia’s goals of creating her structure. The
ongoing challenges reinforced that she was not effectively
learning how to use the code builder, and this was negatively
impacting her self-perception.

B. Alejandro

Alejandro is a 7th-grade Latino boy. He enjoys playing
console video games and computer games, but does not really
identify as a gamer. While happy to talk, Alejandro tends to keep
to himself. In class, he sat at a computer where there was no one
to his left, and typically an open seat to his right. This relative
aloneness did not seem to bother him.

Alejandro’s episode occurred during an in-school unit where
students were asked to design a game using Scratch, Minecraft,
or digital fabrication tools. The students had approximately two
weeks to conceptualize and build their games. As someone who
had prior experience with Minecraft, Alejandro immediately
gravitated to creating his game in Minecraft. The first two days
of our interaction with Alejandro involved students completing
a coding tutorial in Minecraft EDU’s block-based programming
environment. Students followed the Chicken Rain tutorial which
shows them how to make chickens automatically spawn over the
players head as they walk. After completing this first task,
students were challenged to turn this into a mini-game where
they kept track of the number of chickens they could shoot with
their bow and arrow. Alejandro completed the first task with no
assistance, but needed some support to complete the second
portion, which required creating a new variable and including a

new event handler. Nonetheless, Alejandro was noticeably
excited when he got his code to work. At the conclusion of the
two days of getting acquainted with block-based coding in
Minecraft EDU, students were free to work on their games in
teams or individually. The next day Alejandro jumped right into
creating his world. He elected to create a rodeo challenge where
players would ride horses and protect the horses from angry non-
player characters that attack the horses. The rodeo world
included a fenced area for the horses, a seating area for
spectators, and another fenced area for the attacking non-player
characters.

On the particular day that we focus on in this paper,
Alejandro had used the Chicken Rain code to quickly spawn
horses for his stable and had manually constructed the seating
area for one side of the arena. After hearing about other students
who had successfully used programming in their projects, he
asked about ways that code might expedite the process for
making the other side of the arena. The opposite side of the arena
would be a mirror image of the side that he already created.
Minecraft EDU has a copy function that allows players to clone
an existing structure, and place it in a different location.
However, that function does not allow for rotating the structure,
which means that making a mirror image of the existing seating
area would not be possible. Instead, we worked on
programmatically creating stairs in the code builder. We went to
a remote part of the world to get acquainted with how to create
the stairs after first verifying that the clone feature noted above,
would not work for this task. Once in that remote space, it took
several tries, but we eventually were able to create a set of stairs
that was 10 blocks long and went up 20 blocks in the air.
Alejandro used the coding agent so we could watch the actions
unfold. The code instructed the agent to put down blocks while
moving from one end to the next. Upon reaching the end of any
row, the agent would turn to the right, move up one, walk
forward one step, turn the right, and then proceed back to the
other end. Once at the other end, they would turn left, move up
one space, walk forward one step, and turn left again, before
heading back down to the end again. To make the program run,
the user simply needed to provide the length and height of the
desired stairs. Alejandro was impressed with himself when we
got it to work and showed his peers that he had successfully
coded a large staircase. I congratulated Alejandro on his
persistence and went to work with some of the other students in
the class. However, when I passed by Alejandro a few minutes
later, he was manually constructing the other side of the arena.
When I asked him about why he decided not to use the code, he
remarked that “it was too risky.” In short, while he was able to
eventually figure out how to make the stairs, the various
roadblocks and challenges that we had to overcome instilled a
general sense of distrust in the code. Moreover, he was
concerned that if he tried to use the code, something might go
wrong, and portions of his arena would need to be reconstructed.
Even though I reassured him that we could make a copy of the
entire world before testing the code, he was insistent on his
preference to simply do it manually. He had already invested too
much time and energy into his project to see it potentially get
destroyed by running his computer program.

Alejandro’s case surfaces a fascinating phenomenon where,
in the language of Nasir [2], his goals propelled him to learn

47

about using the code builder, but where the learning ultimately
caused him to realize that he would rather not utilize the code
builder to complete the arena. Moreover, Alejandro realized that
much of the just in time information that comes from testing
one’s code in Minecraft EDU is insufficient for supporting
programmatically creating the stairs. Put differently, the code
testing process provided useful information in the moment that
he could process and adapt but dealing with that type of iteration
in the designated arena space was out of the question. At the
same time, Alejandro’s example also relates to Gee’s ‘skills as
strategy’ principle. He learned how to programmatically make
stairs to create the arena seating. However, he still found the
approach to be too risky.

V. DISCUSSION
Looking across these case studies, we see apparent examples

where youth engaging in interest-based computer science
activities experience noticeable frustration and discontent.
Moreover, there are ways that the processes of coding, or using
computer programming led to significant aggravation, and, at
times, withdrawal from an activity that the youth typically
enjoyed. The cases shared in this document are a few of the
many instances that we have observed across in-school and out-
of-school Minecraft-related learning experiences. The cases also
highlight possible ways for navigating these moment of youth
distress and offer some suggestions for how designers might
mitigate such situations. At the most basic level, some of the
learner apprehension to use code could be reduced by making it
easier for youth to undo the changes to the Minecraft world that
resulted from using coding. In a similar vein, the platform could
provide a transparent overlay, for example, of the expected
outcome of the code. This way using coding becomes less
costly. These technological changes could have addressed the
core frustrations that arose within each of the case studies.
Absent this technological component, adults tried to promote
instructional supports that accounted for possible coding errors.
Namely, students were encouraged to test their code in areas of
the virtual world that the student did not plan on using. In other
instances, the facilitators suggested that youth make a copy of
their virtual worlds before testing their computer programs.
These suggestions, however, may not always assuage youth
concerns, nor will a single approach work for all youth. On the
contrary, part of what we learn through Nasir’s framework is
that youth experiences are heavily mediated by their identities
and goals. Hence, it is important for adults to be sufficiently
trained with a collection of strategies to address both the content
and the emotional nature of potential moments of youth distress.

While we have primarily talked about this work in the
context of Minecraft, the ideas raised also have relevance across
interest-based learning environments more broadly.
Technological, or design, choices of the coding platforms should
include some intentional features that recognize the high level
of importance that youth might place on the program content
within interest-based and/or culturally sustaining computing
experiences. Similarly, instructors and facilitators should help
normalize making mistakes as a common part of the
programming process, and teach students strategies for
proactively managing those errors. Finally, educators should be
taught core practices for supporting participant socio-emotional
well-being. While this is being increasingly emphasized within

in-school, K-12 contexts, socio-emotional learning should be
equally as integral to educator learning and support in out-of-
school contexts. Far from being spaces where youth become
relaxed and indifferent, these interest-driven spaces may be
closely tied to youth identities, aspirations, and community
roles. As a result there can be a high propensity for emotionally
charged interaction. Failure to attend to these considerations
could result in the cycle of goals, identity, and learning
negatively impacting one another, and pushing youth farther
away from computing-related experiences.

VI. LIMITATIONS AND FUTURE WORK
The data presented in this paper are a subset of the

interactions that we have observed over the past few years.
While these case studies do not encapsulate every participant’s
experience, we have observed several similar episodes among
the youth and the programs that we work with. That said, all of
the examples are derived from a single school district in a large
metropolitan area. Furthermore, this work looked at a single type
of game-based learning environment that, despite its popularity,
has some apparent shortcomings. Part of what this paper
advocates for, though, is for researchers, designers, and
practitioners to reflect on these shortcomings and develop
tractable strategies to overcome them. We also position this as
an area for future research, both in terms of looking at other
game-based learning environments and other types of
approaches for instantiating interest-based learning. Conducting
such work would help delineate additional dimensions that the
community might consider and highlight concerns that may be
specific to certain types of interest-based programs.

VII. CONCLUSION
Proliferation of game-based learning and other interest-

based learning environments is creating many new avenues for
future generations of computing-related professionals to explore
and learn about computer science. Moreover, these
environments represent a meaningful way to widen participation
in computer science. However, utilization of interest- and
identity-based learning environments necessitates an additional
level of care and attention. Youth proximity and interest to many
of the core ideas and activities within these expansive learning
environments mean that there may be a higher propensity for
them to negatively internalize any shortcomings or perceived
failures that they encounter within the space. As researchers,
designers, and practitioners, we can help mitigate this by
acknowledging that these spaces might feel like very high stakes
learning environments for youth. Doing so means that we
carefully consider ways that the technology can best support
undoing erroneous actions, for example, teaching youth how to
plan for likely errors in their coding, and training facilitators
with various strategies to appropriately address any socio-
emotional needs that may arise.

ACKNOWLEDGMENT
This material is based upon work supported by the National

Science Foundation under Grant No. 1822865. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect the
views of the National Science Foundation.

48

REFERENCES
[1] J. Dewey, Interest and effort in education. Forgotten Books, 1913.
[2] N. S. Nasir, “Identity, Goals, and Learning: Mathematics in Cultural

Practice,” Math. Think. Learn., vol. 4, no. 2–3, pp. 213–247, 2002.
[3] G. Ladson-Billings, “Toward a Theory of Culturally Relevant Pedagogy,”

Am. Educ. Res. J., 1995.
[4] D. Paris, “Culturally Sustaining Pedagogy,” Educ. Res., 2012.
[5] D. C. Edelson and D. M. Joseph, “Motivating active learning: A design

framework for interest-driven learning,” DBRC Publ. Retrieved March,
2001.

[6] P. C. Blumenfeld, E. Soloway, R. W. Marx, J. S. Krajcik, M. Guzdial, and
A. Palincsar, “Motivating Project-Based Learning: Sustaining the Doing,
Supporting the Learning,” Educational Psychologist, vol. 26, no. 3–4. pp.
369–398, 1991.

[7] K. A. Scott, K. M. Sheridan, and K. Clark, “Culturally responsive
computing: a theory revisited,” Learn. Media Technol., vol. 40, no. 4, pp.
412–436, 2015.

[8] M. Ito et al., Hanging out, messing around, and geeking out: kids living
and learning with new media. 2010.

[9] B. Barron, K. Gomez, N. Pinkard, and C. K. Martin, “The Digital Youth
Network Learning Model,” in The Digital Youth Network, 2020.

[10] J. P. Gee, “Learning by Design: Good Video Games as Learning
Machines,” E-Learning Digit. Media, vol. 2, no. 1, pp. 5–16, 2005.

[11] J. L. Plass, B. D. Homer, and C. K. Kinzer, “Foundations of game-based
learning,” Educ. Psychol., vol. 50, no. 4, pp. 258–283, 2015.

[12] Y. B. Kafai, Minds in play: Computer game design as a context for
children’s learning. Routledge, 1995.

[13] C. Lane and S. Yi, “Playing With Virtual Blocks: Minecraft as a Learning
Environment for Practice and Research,” in Cognitive Development in
Digital Contexts, 2017.

[14] J. C. Yip, T. Clegg, E. Bonsignore, B. Lewittes, M. L. Guha, and A. Druin,
“Kitchen Chemistry: Supporting Learners’ Decisions in Science,” 2012.

[15] J. Freeman, B. Magerko, D. Edwards, T. Mcklin, T. Lee, and R. Moore,
“EarSketch,” Commun. ACM, 2019.

[16] M. S. Horn et al., “TunePad: Engaging learners at the intersection of
music and code,” in Computer-Supported Collaborative Learning
Conference, CSCL, 2020.

[17] V. Lee, J. R. Drake, R. Cain, and J. Thayne, “Opportunistic Uses of the
Traditional School Day Through Student Examination of Fitbit Activity
Tracker Data,” pp. 209–218, 2015.

[18] A. Zimmermann-Niefield, M. Turner, B. Murphy, S. K. Kane, and R. B.
Shapiro, “Youth Learning Machine Learning Through Building Models
of Athletic Moves,” in Proceedings of the 18th ACM International
Conference on Interaction Design and Children, 2019, pp. 121–132.

[19] S. Jones, J. Thompson, M. Smith, and M. Worsley, “Data in Motion:
Sports as a site for expansive learning,” Comput. Sci. Educ., pp. 1–34,
2020.

[20] Y. Kafai, K. Searle, C. Martinez, and B. Brayboy, “Ethnocomputing with
electronic textiles: Culturally responsive open design to broaden
participation in computing in American Indian youth and communities,”
in Proceedings of the 45th ACM technical symposium on Computer
science education, 2014, pp. 241–246.

[21] A. Marin and M. Bang, “‘Look it, this is how you know:’ Family forest
walks as a context for knowledge-building about the natural world,”
Cogn. Instr., vol. 36, no. 2, pp. 89–118, 2018.

[22] K. Davis, S. White, D. Becton-Consuegra, and A. Scott, “Culturally
Responsive-Sustaining CS Education: A framework,” 2021.

[23] J. P. Gee, “Good Video Games and Good Learning,” Good Video Games
Good Learn., pp. 33–37, 2016.

[24] B. Andrus, D. Bar-el, C. Msall, D. Uttal, and M. Worsley, “Minecraft as
a Generative Platform for Analyzing and Practicing Spatial Reasoning,”
Spat. Cogn. XII, 2020.

[25] Y. J. Jung, D. Toprani, S. Yan, and M. Borge, “Children’s Participation
in Rulemaking to Mitigate Process Problems in CSCL,” Proceeding 2017
Comput. Support. Collab. Learn. Conf., pp. 652–655, 2017.

[26] S. Nebel, S. Schneider, and G. D. Rey, “Mining Learning and Crafting
Scientific Experiments: A Literature Review on the Use of Minecraft in
Education and Research,” J. Educ. Technol. Soc., vol. 19, no. 2, pp. 355–
366, 2016.

[27] [27] S. C. Duncan, “Minecraft, beyond construction and survival,” Well
Play. a J. video games, value Mean., vol. 1, no. 1, pp. 1–22, 2011.

[28] [28] B. Bos, L. Wilder, M. Cook, and R. O’Donnell, “Learning
mathematics through Minecraft,” Teach. Child. Math., vol. 21, no. 1, pp.
56–59, 2014.

49

