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Abstract With the advent of new and affordable sensing technologies, CSCL
researchers are able to automatically capture collaborative interactions with unprec-
edented levels of accuracy. This development opens new opportunities and chal-
lenges for the field. In this chapter, we describe empirical studies and theoretical
frameworks that leverage multimodal sensors to study dyadic interactions. More
specifically, we focus on gaze and gesture sensing and how these measures can be
associated with constructs such as learning, interaction, and collaboration strategies
in colocated settings. We briefly describe the history of the development of multi-
modal analytics methodologies in CSCL, the state of the art of this area of research,
and how data fusion and human-centered techniques are most needed to give
meaning to multimodal data when studying collaborative learning groups. We
conclude by discussing the future of these developments and their implications for
CSCL researchers.
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1 Definitions and Scope

Educational researchers have argued for decades that the field needs better ways to
capture process data (Werner 1937). More recently in CSCL, Dillenbourg et al.
(1996) noted that “empirical studies have started to focus less on establishing
parameters for effective collaboration and more on trying to understand the role
which such variables play in mediating interaction. This shift to a more process-
oriented account requires new tools for analyzing and modeling interactions.”
Multimodal learning analytics (MMLA; Blikstein and Worsley 2016) is about
creating new tools to automatically generate fine-grained process data from multi-
modal sensors.

More specifically, the focus of this chapter is on gesture and gaze data collected in
colocated interactions. We recognize that collaboration is the result of subtle micro-
behaviors, such as learners’ body position, gestures, head orientation, visual atten-
tion, and discourse. These actions are complex, intertwined, and result in a rich
choreography of behaviors that create sophisticated social interactions. Figure 1
provides a visual representation of the key constructs of this chapter:

The first column shows modalities studied by CSCL researchers (e.g., gaze,
gestures, speech, dialogue). These modalities provide “Raw Measures” of users’
gaze or body postures. These data are then used to capture specific “Observable
Behaviors,” such as joint visual attention (JVA) or body similarity. We can use these
behaviors as proxies for “Theoretical Constructs” (Wise et al. this volume), for
example, the quality of a group’s common ground (Clark and Brennan 1991) or
the extent to which group members mimic each other (Chartrand and Bargh 1999).

The raw measures, observables behaviors, and constructs can be used to predict
outcomes of interest (e.g., how well a group is collaborating), model collaborative

Fig. 1 How different sensor modalities can help CSCL researchers capture constructs relevant to
collaborative learning, and how this can be used to predict, model, explain, and support productive
behaviors. In this chapter, we focus on gaze and gestures (even though other modalities—such as
speech—are highly relevant in CSCL settings)
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processes (e.g., how social interactions change over time), explain them (e.g.,
contribute to theories of collaboration), or support collaboration (e.g., design inter-
ventions that use sensor data to support learning). In the sections below, we describe
the history and development of MMLA. We then provide additional definitions for
the constructs in Fig. 1 and provide concrete examples of their use.

2 History and Development

While MMLA seems to be a new and exciting methodological development, there
has been a long tradition of designing multimodal devices to capture human behav-
ior. At the beginning of the twentieth century, Huey (1908) designed the first
eye-tracker by having participants wear contact lenses with a small opening for the
pupil. Because a pointer was attached to it, Huey was able to make new discoveries
on effective reading behaviors. In the 1920s, a German pedagogue, Dr. Kurt Johnen,
created a device to measure expert piano players’ breathing and muscular tension as
a way to design better instruction for novices (Johnen 1929). In 1977, Manfred
Clynes built a device called a “sentograph” which attempted to detect emotions by
extracting the length and force applied on a pressure-sensitive finger rest (Clynes
1977). There are many other examples of early “sensors” designed to capture human
behaviors.

Over the last decade, however, the affordability and accessibility of multimodal
sensing have opened new doors for monitoring, analyzing, visualizing, and regulat-
ing a variety of learning processes. Depth cameras such as the Microsoft Kinect can
collect information about a person’s body joints (x, y, z coordinates), their facial
expressions, and their speech 30 times per second. Researchers can obtain more than
100 variables from this sensor, which represents +3000 data points per second for
one person. This translates to roughly 10 million data points for an hour of data
collection. Multiply this figure by the number of sensors (e.g., eye-trackers, galvanic
skin response sensors, emotion detection tools, speech features) and number of
learners to get a sense of the possibilities and challenges of combining sensor data
with data mining techniques.

3 State of the Art

In this section, we describe the state-of-the-art research methods for analyzing gaze
and motion data from small groups in educational settings. We start with some
definitions, conventions, and findings from the CSCL community and beyond. We
conclude this chapter with a comparison of the state of the field for gaze and gesture
sensing, comments on the future of associated methodologies, and implications for
CSCL researchers.
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3.1 Gaze Sensing in CSCL

With sensing devices becoming more affordable, the last decades have seen an
increasing number of CSCL researchers taking advantage of eye-trackers to study
small collaborative groups. This line of work is grounded in the literature on joint
visual attention (Tomasello 1995). Joint attention is an important mechanism for
building a common ground (i.e., “grounding,” which allows group members to
anticipate and prevent misunderstanding; Clark and Brennan 1991). Educational
researchers have built on this idea and extended it to learning scenarios: “From the
viewpoint of collaborative learning, misunderstanding is a learning opportunity. In
order to repair misunderstandings, partners have to engage in constructive activities:
they will build explanations, justify themselves, make explicit some knowledge
which would otherwise remain tacit and therefore reflect on their own knowledge,
and so forth. This extra effort for grounding, even if it slows down interaction, may
lead to better understanding of the task” (Dillenbourg and Traum 2006).

In other words, educational researchers go beyond the psycholinguistic definition
of grounding to focus on shared meaning making (Stahl 2007). Shared meaning
making is associated with “the increased cognitive-interactional effort involved in
the transition from learning to understand each other to learning to understand the
meanings of the semiotic tools that constitute the mediators of interpersonal inter-
action” (Baker et al. 1999, p.31). It gradually leads to the construction of new
meanings and results in conceptual change. There is some evidence suggesting
that groups with high levels of joint visual attention are more likely to iteratively
sustain and refine their common understanding of a shared problem space (Barron
2003). Because eye-trackers can provide a rigorous measure of joint visual attention,
gaze sensing has become an attractive methodology for studying grounding in
collaborative learning groups.

The state of the art of CSCL gaze sensing is a dual eye-tracking methodology
where pairs of learners solve a problem together and learn from a shared set of
resources. Early studies had two participants looking at a different computer screen
equipped with an eye-tracker (Jermann et al. 2001). Participants can communicate
through an audio channel and have access to the same interface. For dyadic analysis,
the two eye-tracking devices need to be synchronized so that the resulting datasets
can be combined to compute measures of joint visual attention (JVA).

After the data are acquired, there are established methodologies for computing
JVA measures. Cross recurrence graphs (Richardson et al. 2007) are commonly used
to visually inspect the joined eye-tracking datasets and identify missing data. JVA is
then computed according to Richardson and Dale’s findings (Richardson and Dale
2005), where they found that dyad members are rarely perfectly synchronized; it
takes participants �2 s to react to an offer of joint visual attention and respond to
it. Thus, for a particular gaze point to count as joint visual attention, researchers
usually look at a 4 s time window to check whether the other participant was paying
attention to the same location. This methodology provides an overall measure of
attentional alignment for dyads.
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One common finding is that levels of joint visual attention are positively associ-
ated with constructs that the CSCL community cares about. For example, researchers
have used established coding schemes to evaluate the quality of a dyad’s collabora-
tion and correlated it with measures of JVA. Meier et al. (2007) developed a coding
scheme that characterizes collaboration across nine subdimensions: sustaining
mutual understanding, dialogue management, information pooling, reaching con-
sensus, division, time management, technical coordination, reciprocal interaction,
and individual task orientation. Among those subdimensions, JVA has been repeat-
edly found to be significantly associated with a group’s ability to sustain mutual
understanding (e.g., Schneider et al. 2015; Schneider and Pea 2013). Some other
studies have also found positive correlations between JVA and learning gains
(Schneider and Pea 2013), which suggests that this type of collaborative process is
not just beneficial to collaboration, but also to learning. This shows that, to some
extent, JVA measures can be used to predict collaboration quality and learning.

Additional measures of JVA have been developed for specific contexts. For
example, “with-me-ness” was developed to measure if students are following
along with a teacher’s instruction (Sharma et al. 2014). This measure is calculated
by aggregating three features of gaze data: entry time, first fixation duration, and the
number of revisits. Entry time is the temporal lag between the time a reference
pointer (gaze) appears on the screen and stops at the referred location (x, y) and the
time the student first looks at the referred location (x, y). The first fixation duration is
how long the student gaze stopped at the referred location for the first time and
revisits are the number of times the student’s gaze comes back to the referred
location within 4 s.

In addition to these measures of JVA, CSCL researchers have also looked at the
“attentional similarity” between participants (Sharma et al. 2013). For a given time
window (e.g., 5 s), the proportion of time spent on different Areas of Interest (AOIs)
is computed and compared across participants using a similarity metric (e.g., the
cosine similarity between two vectors). Papavlasopoulou et al. (2017) found that in a
pair programming task, teenagers (13- to 17-year-old participants) spent more time
overall working together (higher similarity gaze) than younger participants kids
(8–12 year old). While this measure is similar to others described above, it uses a
less conservative operationalization of joint visual attention. These measures provide
alternative ways of modeling joint visual attention in small groups.

It is also possible to detect asymmetrical collaboration from the eye-tracking data
(Schneider et al. 2018). For each moment of joint attention, one can look at which
participant initiated this episode (i.e., the person whose gaze was first present in this
area during the previous 2 s) and which student responded to it (i.e., the person
whose gaze was there next). The absolute value of the difference between the
number of moments that each participant initiated and responded to represents the
(im)balance of a group’s “visual leadership.” As an illustration, a group may achieve
joint attention during 25% of their time collaborating together; let us say that one
student initiated 5% of those moments of JVA, while the other student initiated 20%
of those moments. Schneider et al. (2018) found this measure to be negatively
correlated with learning gains—meaning that groups in which one person tended
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to always initiate or respond to an offer of joint visual attention were less likely to
achieve high learning gains. These findings can help us explain how specific
collaborative behaviors can contribute to learning.

Additionally, researchers have started to go beyond remote collaboration and use
dual eye-tracking in colocated settings using mobile eye-trackers (Schneider et al.
2018). In this type of setup, there is an extra step of spatially synchronizing the two
eye-tracking datasets, which is usually done by remapping participants’ gaze into a
ground truth (i.e., a common scene that both participants look at). The remapping
processes are usually accomplished by disseminating fiducial markers in the envi-
ronments and using this shared set of coordinates between each participant’s point of
view and the ground truth (Fig. 2). When the two gaze points are remapped onto the
ground truth, one can reuse the methodology described above for remote interactions
and compute the same measure of joint visual attention.

Finally, there are practical implications of using dual eye-tracking methodologies
beyond quantitatively capturing collaborative processes. The last decade has seen a
nascent interest for designing shared gaze visualization—i.e., displaying the gaze of
one’s partner on a computer screen to support joint visual attention (see review by
d’Angelo and Schneider under review). Shared gaze visualizations have been found
to facilitate communication through deictic references, disambiguate vague utter-
ances, and help participants anticipate their partner’s verbal contribution. This is an

Fig. 2 (Reproduced from Schneider 2019): An example of using dual mobile eye-tracking to
capture joint visual attention in a colocated setting (in this particular case, pairs of participants had
to program a robot to solve a variety of mazes). The two images on the right show the perspective of
the two participants; the left image shows a ground truth where gaze points are remapped using the
location of the fiducial markers detected on each image (the white lines connect identical markers)
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exciting new line of research because work goes beyond descriptive measure of
collaboration and suggests interventions to support collaboration.

While the study of JVA through gaze sensing is reaching some maturity, there are
obvious gaps in this area of research. Dual eye-tracking tends to be used in live
remote collaboration, which is not the most ecological setting from an educational
perspective. Most students still work in colocated spaces, where they work together
face-to-face or side-by-side. This lack is slowly being addressed by new methodol-
ogies using mobile eye-trackers, which brings more ecological validity to this field
of research.

3.2 Gesture Sensing in CSCL

In contrast to eye-tracking, where researchers are looking at the x,y coordinate of a
participant’s gaze, gesture tracking (and more generally motion sensing in CSCL) is
operationalized at varying levels of granularity. These levels of analysis range from
the mere quantification of movement or the complex identification of specific
gestures in dyadic interactions to localizing people in physical learning spaces.
Part of this breadth in levels of analysis reflects to relative infancy of this area of
study. Researchers are in the process of determining the appropriate measures and
theoretical grounding for gesture sensing. In this section, we present examples along
this spectrum and further note how these approaches are utilized to examine and
support collaboration.

As is the case with eye tracking, the availability of low-cost gesture tracking
technology has enabled researchers to develop and create interfaces that incorporate
human gestures. Initially, many of these technological systems relied on an infrared
camera (e.g., the Nintendo Wiimote) and an infrared source (e.g., an infrared pen or
television remote). This was, for example, used for the mathematical inquiry trainer
(Howison et al. 2011), a system that supports embodied learning of fractions. The
next wave of gesture technology was heavily fueled by the Microsoft Kinect Sensor
and supporting SDK. The Kinect Sensor V2 uses a depth camera to provide a
computer vision-based solution to track upper and lower body joints—as well as
finger movement, head position, and even the amount of force applied to each
appendage. Leong et al. (2015) provide an in-depth comparison of different depth
cameras and their capabilities. More recently, advances in computer vision have
eliminated the need for specialized data capture hardware. Instead, OpenPose (Cao
et al. 2017; Simon et al. 2017; Wei et al. 2016) and DensePose (Güler et al. 2018),
for example, train deep neural networks for estimating human body pose, from
standard web images or videos cameras. As an example, Ochoa et al. (2018) use
OpenPose to provide feedback to users about their body posture during oral presen-
tation training. The result of these technological developments is a growing oppor-
tunity to employ use gesture sensing to study collaborative learning environments,
without the need for expensive, or invasive wearables.
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As previously noted, research on motion sensing in CSCL operates at different
levels of complexity (i.e., individual learning, small group interactions, and localiz-
ing a larger number of participants in open spaces). Some studies are merely looking
to quantify the amount of movement; others examine body synchrony, while still
others are concerned with recognizing specific types of gestures or body movements.
The specific approaches utilized, as well as how they are operationalized are
necessarily impacted by the research questions being explored.

At the individual level, several studies have looked at the potential of motion
sensing for understanding learning and constructing models of the student learning
experience. Schneider and Blikstein (2015), for example, tackled this question by
examining prototypical body positions among pairs of learners completing an
activity with a tangible user interface. The researchers categorized body postures
using unsupervised machine learning algorithms and identified three prototypical
states: an “active” posture (positively correlated with learning gains), a “semi-active”
posture, and a “passive” posture (negatively correlated with learning gains). Inter-
estingly, the best predictor for learning was the number of times that participants
transitioned between those states, suggesting a higher number of iterations between
“thinking” about the problem and “acting” on it. Researchers interested in ITSs
(intelligent tutoring systems) have also used motion and affective sensing to predict
levels of engagement, frustration, and learning using supervised machine learning
algorithms. Grafsgaard et al. (2014), for example, found indicators of engagement
and frustration by leveraging features about face and gesture (e.g., hand-to-face
gestures) and indicators of learning by using face and posture features. These two
papers highlight the opportunity for motion sensing to help us better identify patterns
of engagement that may be indicative of improved learning, or certain affective
states. Specifically, gesture sensing can help researchers predict learning gains or
affective states.

At the group level, the most basic uses of gesture data involve the quantification
of bodily movement among pairs of students collaborating on a given task. For
example, Martinez-Maldonado et al. (2017) presented an application of the Kinect
by locating it on top of an interactive tabletop to associate actions logged by the
multitouch interface with the author of such a touch. Authors applied a sequential
pattern mining algorithm on these logs to detect patterns that distinguished high from
low-performing small groups in a collaborative concept mapping task. Worsley and
Blikstein (2013) used hand/wrist joint movement data to extract patterns of multi-
modal behaviors of dyads completing an engineering design activity. The gestural
data, when taken in conjunction with audio and electrodermal activation data were
beneficial in codifying the types of actions students were taking at different phases of
the building activity. Such information about student gestural engagement could also
be used in a way that is analogous to analyses of turn-taking. Moreover, it can help
answer questions about the extent of each participant’s physical contributions to a
given learning activity, or, the patterns of participation that emerge between partic-
ipants as they collaborate with one another. In the same vein, Won et al. (2014b)
found that body movements captured by a Kinect sensor could predict learning with
85.7% accuracy in a teacher–student dyad; the top three features were the standard
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deviation of the head and torso of the teacher, the skewness of students’ head and
torso, and mean of teacher left arm. Other studies have looked at the relationship
between body synchronization and group interaction. Won et al. (2014a), for
example, found that nonverbal synchrony predicted creativity in 52 collaborative
dyads. Models trained with synchrony scores could predict low or high scores of
creativity with 86.7% accuracy. In educational contexts, Schneider and Blikstein
(2015) looked for the salience of body synchronization by considering the correla-
tion between body position similarity and learning gains. However, the results
indicated no correlation between learning and body synchronization in this context.
Similarly, Spikol et al. (2017) paired a number of computer vision systems to detect
wrist movement and face orientation of small groups of students performing an
electronic toy prototyping task in triads. Results indicated that some features, such as
the distance between all learners’ hands and the number of times they look at a
shared screen, are promising in helping to identify physical engagement, synchro-
nicity, and accountability of students’ actions. Concretely, motion sensing among
groups of learners can be used to explain success within given collaborative expe-
rience as determined through the relative participation of each individual and their
level of synchrony or proximity to their peers.

Researchers are also finding ways to leverage gestural data as a means for
streamlining and improving the data analysis process. In a study that involved
pairs of students completing engineering design tasks, Worsley et al. (2015) were
able to show that using body posture information to automatically segment data into
meaningful chunks, led to analyses that provided stronger correlations with student
performance and student learning. In this particular study, the authors used auto-
matically detected changes in head pose relative to learners’ partners to demark the
beginning of a new phase. This approach was compared to human annotation of
phases, and taking a fixed window approach, with the body position-based segmen-
tation proving to be quite beneficial. Hence, the utility of gesture data does not
necessarily have to be restricted to a final correlation with learning or performance. It
can, instead, be used to more adequately group chunks of data into meaningful
representations. In this line of work, computational methods provide ways to model
students’ behaviors.

In another emerging body of work, researchers are exploring the use of gestures,
in conjunction with other modalities, to better understand embodied learning in
mathematics and science. For example, Abrahamson’s Mathematical Inquiry
Trainers (Howison et al. 2011) and Robb Lindgren’s ELASTICS (Kang et al.
2018) platforms represent computer-supported tools that help facilitate student
learning with the assistance of a more knowledgeable interviewer. In both instances,
the interviewer serves as a collaborator to help guide the student toward learning and
articulating mathematical or scientific ideas. In the case of Abrahamson’s work,
students use their hands to reason about fractions, either through a touch screen
interface, Nintendo Wii mote, or Kinect sensor. In the case of ELASTICs, students
use gestures to instantiate different mathematical operations. For example, in Kang
et al. participants determine a gestural sequence that will allow them to produce a
value of 431. In order to reach this value, students can complete gestures that
correspond to add 1, subtract 1, multiply by 10, or divide by 10. These subtasks
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exist within a larger task of helping students reason about exponential growth.
Crucial for both Abrahamson and Lindgren’s work is the opportunity to create
gestural interfaces that allow for embodied experiences, and the availability of visual
representations that individuals and/or pairs can utilize to refine their thinking and
serve as a context for discussion. This kind of work exemplifies the potential of
motion sensor data to support novel, embodied, collaborative learning.

These different examples suggest that while there are some similarities and
accepted practices in how to analyze gesture data (e.g., the use of joint angles as
opposed to three-dimensional x, y, z data), there are still several areas where new
innovations and ideas are emerging. The identification of constructs that are analo-
gous to the joint visual attention, for example, does not yet seem to exist within the
gesture space. Instead, researchers have found and explored different metrics that
aim to characterize the nature of collaboration among groups or pairs of learners.

3.3 Comparison Between Gaze Sensing and Gesture Sensing

In this section, we compare the state of the field in gesture and gaze sensing to
illustrate opportunities and challenges to studying small collaborative groups using
gaze and motion sensing. Both areas of research have been evolving at different
paces and have contributed unique findings to the study of collaborative learning.
Table 1 summarizes the main commonalities and differences across those two
methodologies:

Table 1 A comparison of the state of research using gaze and motion sensing based on the work
reviewed in this chapter

Gaze Sensing Motion Sensing

Raw
measures

x, y coordinates of gaze in a 2D space
(e.g., remote or mobile eye-tracker)

x, y, z coordinates of dozens of body
joints in a 3D space (e.g., Kinect
sensor)

Accuracy Accurate, depending on the eye-tracker
used

More noisy and susceptible to
occlusion

Constructs Joint visual attention (Schneider and
Pea 2013), attentional similarity
(Sharma et al. 2013)

Body movement (Worsley and
Blikstein 2013), prototypical states
(Schneider and Blikstein 2015), phys-
ical synchrony (Won et al. 2014a)

Methodology Well established; strong conventions
(Richardson and Dale 2005)

In development; currently, there are no
strong conventions

Models Glass-box traditional statistical models
(e.g., Sharma et al. 2014); higher
explainability, lower predictive value

Black-Box machine learning models
(e.g., Won et al. 2014a; b); lower
explainability, higher predictive value

Theoretical
basis

Well-documented and specific, from
developmental (Tomasello 1995) and
social (Richardson et al. 2007)
psychology

Emerging and less prescriptive, e.g.,
embodied cognition (Howison et al.
2011)
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A striking difference between those two fields of research is that gaze sensing—
through the study of joint visual attention—has developed well-established conven-
tions for visualizing and capturing collaborative processes. This work leverages
foundational theories in developmental psychology and has specific hypotheses
about the role of visual synchronization for social interactions. Because the raw
measures are simpler and the theory is more prescriptive, it has allowed researchers
to use more transparent (“glass-box”) statistical models (e.g., Richardson et al. 2007)
and design innovative interventions to support collaborative processes—for example
by building systems where participants’ gaze can be displayed in real time and
shared within the group (Schneider and Pea 2013). Motion sensing, on the other
hand, offers larger and more complex datasets. Because theoretical frameworks are
less specific (i.e., embodied cognition), there is a wider variety of measures and
models being used, with more researchers leveraging “black box” models (i.e.,
supervised machine learning algorithms) to predict collaborative processes (e.g.,
Won et al. 2014b). While those models are designed to provide accurate predictions,
they tend to be less transparent and offer fewer opportunities for designing
interventions.

In summary, gaze sensing has benefited from simpler constructs, more prescrip-
tive theoretical frameworks, and accurate sensors to reach a certain level of maturity.
Motion sensing, on the other hand, has an untapped potential: the technology is
rapidly improving and there are new opportunities to make theoretical contributions,
develop innovative measures of group interaction, and design interventions to
support collaborative learning processes.

3.4 Fusion

While most of the current body of work has looked at gaze and motion sensing in
isolation, there is a growing interest in combining multiple sources of data to provide
a more complete depiction of complex social aspects of human activity that would be
hard to model considering one modality of group interaction only. In the examples
discussed above, multiple data sources have been used to model different aspects of
collaborative learning. For instance, gaze sensing is commonly paired with infor-
mation generated by the learning systems or with transcripts (Schneider and Pea
2015). Gestural data have been enriched by combining them with quantitative traces
of speech, such as sound level (Spikol et al. 2017) or turn-taking patterns (Martinez-
Maldonado et al. 2017), to give meaning to gestures and poses. However, the
process of fusing across data streams can bring a number of challenges related to
low-level technical issues, such as data modeling and pattern extraction; and higher
level aspects, such as sensemaking, data interpretation, and identification of impli-
cations for teaching, learning, or collaboration.

Some low-level challenges in fusing gaze, gesture, and other sources of data are
associated with deciding what features to extract from the data, and how to segment
or group the multiple data streams with the purpose of jointly modeling a meaningful

Gesture and Gaze: Multimodal Data in Dyadic Interactions 635



indicator of collaboration or learning. In terms of multifeature extraction, researchers
often overlook the opportunity to extract multiple pieces of information from a single
data source. In the case of gaze data, for example, multifeature extraction includes
determining fixations, saccades, and pupil dilation from the single data source (i.e.,
the eye tracker). From skeletal tracking information, one might extract pointwise
velocity, angular displacement, or distance between body points. The challenge here
is in giving interpretative meaning to the selected features that can be obtained from
the data for particular contexts.

This challenge also applies to how the data is grouped or segmented. Summary
statistics represent a simple approach for investigating multimodal data. In principle,
this approach merges all of the data from a given modality into a single representa-
tion. Researchers commonly use values of mean, median, mode, range, maximum,
and minimum. This accomplishes fusion across time, but can grossly oversimplify
the data representation. Instead, researchers may wish to “group” data into mean-
ingful segments. Within this paradigm, data can be segmented into chunks that range
in size from the entire dataset all the way down to individual data points. One
advantage of segmentation is that it can help surface patterns and trends that are
localized to particular segments. For example, Worsley and Blikstein (2017)
explored the affordances of segmentation by comparing three different approaches.
These authors ultimately found that having a combination of semantically meaning-
ful segments and a large number of segments yielded the most meaningful results.

At a higher level, there are challenges in giving meaning to fused data across
streams and participants. Fundamental to multimodal learning analytics is the idea
that a given data stream can only be interpreted in the context of other data streams.
However, a key question remains: on what basis can low-level indicators serve as
proxies for higher order collaborative learning constructs? From a research perspec-
tive, this is a fundamental modeling problem that involves encoding low-level events
in data representations that contain a certain amount of contextual information to
facilitate higher level abstraction. This is manifested in the learning analytics and
educational data mining communities in various forms such as stealth assessment
(Shute and Ventura 2013) and evidence-centered design (Mislevy et al. 2012). At the
intersection between CSCL and learning analytics, this challenge has been called as
mapping “from clicks to constructs” (Wise et al. this volume).

From a teaching and learning perspective, modeling group constructs from
multiple data streams is a prerequisite for creating interfaces that are intelligible to
teachers and learners, who commonly do not have a strong analytical background.
Until now, most multimodal analytics for group activity have mainly remained the
preserve of researchers (Ochoa 2017). Imbuing traces of gaze and gesture, and other
sources of data, with contextual meaning can bring teachers and students into the
sensemaking and interpretation loop. One promising approach is that of Echeverria
et al. (2019) who proposed a modeling representation to encode each modality of
data into one or more of the n columns of a matrix and segments that contain
instances of group behaviors into the m rows. From this representation, a set of
group visualizations were proposed, each presenting information related to one
modality of teamwork, namely speech, arousal, positioning, and logged actions.
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In summary, there are numerous technical and sensemaking-related challenges
related to combining multiple data sources that need to be addressed in turn.
However, the potential benefits, such as the possibility of creating interpretable
group models, generating a deeper understanding of collaborative learning, and
deploying user interfaces that can provide tailored feedback on collocated activities,
outweigh such challenges.

4 The Future

The last decade has seen an increasing number of research projects involving gaze
and motion sensing. This is a positive development for the CSCL community. This
methodology provides researchers with large amounts of process data and new tools
to analyze them. Not only does it help automate time-consuming analyses, but it also
provides a new perspective to understand collaborative processes. Additionally, it
provides researchers with opportunities to develop real-time interventions (e.g.,
through dashboards or awareness tools; Schneider and Pea 2013).

These advances are not without challenges. For example, most of the work
presented in this chapter is about dyads, when collaborative groups are often larger
than two participants. This poses new opportunities for adapting multimodal mea-
sures of collaboration for larger groups (e.g., is JVA occurring when all the partic-
ipants—or just two group members?—are jointly looking at the same place at the
same time?) Researchers are slowly starting to look at larger social contexts, but this
is currently an understudied area of research.

Another major area of work is the contribution of multimodal studies to theory.
Researchers are designing more sophisticated measures of visual synchronization
and collaboration (e.g., leadership behaviors, with-me-ness) and turning dual
eye-tracking setups into interventions to support collaborative processes. However,
this kind of empirical study needs to be replicated and refined before they can be
established as significant theoretical contributions to the field of CSCL. More
importantly, theories of collaboration have not yet benefited from more fine-grained
multimodal measures of collaborative processes.

Finally, it should be noted that most studies are unimodal or only combine two
data streams together. Very few projects have attempted to combine data sources;
data fusion presents new opportunities for studying collaborative learning groups
and capturing more sophisticated constructs. With these new opportunities also
come increased concerns about data privacy: how should we handle questions
around the collection, storage, and analysis of potentially sensitive datasets? It will
be important for the CSCL researchers to carefully reflect on these concerns as they
look to drive innovation and advance knowledge.

In the coming decade, we are expecting to see more affordable and accurate
sensors emerge as well as easy-to-use toolkits for analyzing multimodal datasets.
With an increased focus on data-driven approaches, we believe that multimodal
sensing will become a common tool for educational researchers. Those new tools
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will provide new ways to build theories of collaboration and design interventions to
support social interactions. We agree with Wise and Schwarz (2017), who argue that
CSCL has to embrace those new methods if it wants to stay relevant in an increas-
ingly data-driven world.
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Video Data Collection and Video Analyses
in CSCL Research

Carmen Zahn, Alessia Ruf, and Ricki Goldman

Abstract The purpose of this chapter is to examine significant advances in the
collection and analysis of video data in computer-supported collaborative learning
(CSCL) research. We demonstrate how video-based studies create robust and
dynamic research processes. The chapter starts with an overview of how video
analysis developed within CSCL by way of its pioneering roots. Linked throughout
the chapter are the theoretical, methodological, and technological advances that keep
advancing CSCL research. Specific empirical and experimental research examples
will illustrate current and future advances in data collection, transformation, coding,
and analysis. Research benefits and challenges that include the current state of
understanding from observations of single, multiple, or 360� camera recordings
will also be featured. In addition, eye-tracking and virtual reality environments for
collecting and analyzing video data are discussed as they become new foci for future
CSCL research.

Keywords Video data · Video analysis · Learning research · Group research ·
Psychological methods

1 Definitions and Scope

The particularity of rich video data compared to other data gathering methods in the
learning sciences is that video datamake both verbal and nonverbal social interactions
in learning situations enduringly visible and audible to researchers. In this regard,
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video data differ from outcome data (e.g., quantitative data gathered in learning
experiments systematically examining treatments and their effects), because they
can open the “black box” of collaborative learning processes. The scope of this chapter
is to illuminate the scholarly understanding of existing and future methods for video
data collection and data analysis in CSCL research in a practical fashion. The chapter
maps past, present, and future innovative advances with specific examples selected to
demonstrate the methods of video data collection and data analysis that learning
science and CSCL researchers in a range of fields (e.g., Zheng et al. (2014)) have
been using for a better understanding of complex collaborative learning processes.

CSCL video methods span the entire spectrum of the social sciences (Brauner
et al. 2018), which includes qualitative research methods such as case-based field-
work, and video ethnographic accounts, as well as quantitative methods such as
experimental, and data-driven statistical research which includes learning analytics
accounts. The majority of CSCL research articles in the International Journal of
Computer-Supported Collaborative Learning (IJCSCL) as well as other related
journals and volumes tend to consist of mixed methods studies, using both case-
based and (quasi-)experimental research methods (e.g., Sinha et al. 2015; Zahn
2017). In this chapter, we will provide rich examples of how researchers can use
video data for both deep qualitative case studies and with advanced and automated
methods for complex visual analyses . Over time, we propose, they may also be used
along with learning analytics.

We open the chapter with an historical overview of pioneering analog and digital
video researchers in the learnings sciences and CSCL. We also delve into current
research in CSCL video research to explore the benefits and challenges that exist
now and will likely exist in the coming years. Questions about data collection, data
transformation, data analysis, and interpretation will be followed by three examples
of contemporary research studies. We will also present new approaches to using
video data that allow for deeper post hoc observations of recorded learning interac-
tions and digging into the details of knowledge co-construction and knowledge-
building in and beyond CSCL research. For example, certain collaborative theoret-
ical approaches, such as complex qualitative interaction analyses (Rack et al. 2019),
focus on coordination and collaboration group processes. This interactional
approach is especially enhanced by collecting and analyzing video data which can
if needed, be linked to ethnographic video accounts.

The closing sections of this chapter address the current understanding of video
data as observations from single or multiple cameras or 360� camera recordings. It
will also look at the emergence of video data as ways of “looking through people’s
eyes” when eye-tracking or the use of virtual reality tools for collecting and
analyzing video data are used (Greenwald et al. 2017; Sharma et al. 2017). Such
tools represent promising areas for future developments. A deeper understanding of
how a range of theories and collaborative methods and tools influence the research
process can be found in Goldman (2007a), b, Part 1 and 4); Derry et al. (2010) as
well as in Goldman et al. (2014).
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2 History and Development: Pioneering Video Research

The twentieth century heralded in a range of new visual media forms such as social
documentary, fictional photography, and ethnographic filmmaking. To study this
topic more deeply, refer to the AMC filmsite called The History of Film. See: https://
www.filmsite.org/pre20sintro2.html. The affordances of both photography and film
were soon adopted by sociologists, anthropologists, and ethnographers around the
world as tools for studying the lives of people at home, school, work, or play, in
places both near and far. For example, anthropologist Margaret Mead and cyberne-
tician Gregory Bateson used the film camera as a tool for social and cultural
documentation, producing a film called Bathing Babies in Three Cultures in 1951
based on Mead’s research comparing the bathing practices of mothers in three
countries—New Guinea, Bali, and the United States. Mead, ever the futurist,
imagined a time when there would be 360� cameras (Mead 1973). She thought it
would take 10 years. It took 40!

2.1 Foundational Analogue and Digital Video Studies in LS
and CSCL

Erickson (2011) looking back on his own early video observations of learning
processes in groups emphasizes the central advantage which made him rely on
audiovisual records to study learning in small groups: “. . .I could see who the
speakers were addressing as they spoke—a particular individual, a subset of the
group, or the whole group. . . . A multimodal and multiparty analysis of the locally
situated ecological processes of interaction and meaning making became
possible. . . .” (p. 181). The camera he used weighed about 25 pounds and recording
was done on reels that were about 16 inches in diameter.

One of the earliest breakthrough collaborative classroom studies of interpreting
digital video data was conducted by Goldman-Segall (1998) at the MIT Media Lab.
For over 3 years, her digital video ethnography at a Boston magnet school included
videotaping computer activities of, and conversations with, grades 5 and 6 youth and
their teachers. During the decade, Goldman-Segall developed the Points of Viewing
Theory (1998) and the Perspectivity Methodology (Goldman 2007b) based on
Clifford Geertz’s (1973) notion of layering data to build thick description. Goldman
along with Dong (Goldman and Dong 2007) advanced the ethnographic use of thick
description to become thick interpretations, which were built by collaborative by
layering diverse views of researchers, teachers, and students. For more than two
decades, she designed digital video analysis environments with each new research
study. The first environment was a simple HyperCard tool that enabled Goldman to
establish categories gleaned from thematically arranged video excerpts that had been
transferred onto videodiscs. By using her new tool called Learning Constellations,
collaborating teachers and researchers could annotate, rate, analyze, and interpret the
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video (1998). Following LC was the tool, WebConstellations in 1997, and Orion, an
online digital video analysis tool for changing our perspectives as an interpretive
community (Goldman 2007a). Each of these collaborative studies and the methods
and tools is described in articles found in the references.

Modern technologies also allowed researchers to be more and more flexible in
studying more complex learning situations comprehensively. For instance, Cobb and
colleagues (e.g., Cobb and Whitenack 1996) studied children’s mathematical devel-
opment in long-term social contexts in a classroom study. Two cameras captured
pairs of children collaborating on mathematics problem-solving over a course of
27 lessons, the authors articulate a three-stage method that begins with interpretive
episode-by-episode analyses and meta-analyses resulting in integrated chronologies
of children’s social and mathematical developments.

Another comprehensive study was the collected videotaped records for classroom
instructions from classrooms around the world called the Third International Math-
ematics and Science Study (TIMSS; Stigler et al. 1999). This video-based compar-
ative study aimed at drawing comparisons between national samples. It set a
standard for international sampling and video-based methods (Seidel et al. 2005):
231 eighth-grade mathematics lessons from Germany, Japan, and the United States
were observed. In each classroom, one lesson was videotaped. The tapes then were
encoded, transcribed, and analyzed based on a number of criteria. Analysis focused
on the content and organization of the mathematics lessons and on the teaching
practices that used a software especially developed for this study. According to
Stigler et al., the advantages of videos compared to real-time observations make it
possible for observers to work collaboratively on the video data. A further advantage
described is the facilitation of communication of the research results. Similar
advantages were achieved with new approaches when digital video tools entered
the scene.

A comprehensive video workflow model for using video data in learning science
research so that it can be shared was presented by Pea and Hoffert (2007). Their
process model goes from the strategic planning of video research to a preproduction
phase to the phases of video capturing, coding, storing, and chunking. Analysis then
turns into collections of video segments, further statistical analyses, or case descrip-
tions. The model moves from creating video as a means of observation and data
collection toward decomposing video for analysis and then toward recomposing
video for shared interpretation, collaboration, and discussion in a group or larger
community of researchers. Pea and Hoffert thereby suggest that staying as close as
possible to the video data during the research process, instead of translating results
back and forth, affords an almost absolute closeness to the data during the whole
process—also in sharing or presenting and discussing results. The authors introduce
“WebDIVER,” which is a streaming media interface for “web-based diving” into the
video.

Koschmann et al. (2007) used the ethnomethodology of mini-chunks of video
data to closely examine how learners form and act in collaborative communities.
Their narrative methods used video to compose analytic narratives/stories from their
footage.
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Powell et al. (2003) developed a seven-step method through their longitudinal
study of children’s mathematical development within constructivist learning envi-
ronments. The method starts with the researcher attentively viewing micro-video and
then proceeds through stages of identifying critical events, transcribing, coding, until
it ends with composing analytic narratives.

We will now discuss lessons that have been learned and how to integrate those
lessons into future research practices.

3 State of the Art

Video analysis is now a common practice in learning science and CSCL research that
spans across methodological approaches, be they experimental, quasi-experimental,
field research, or case studies (see Derry et al. 2010). Video data are used to capture
social and/or human-computer interactions, present moments of learning, and, in
qualitative case studies, produce “collaborative learning accounts” (Barron 2003). In
this section, we first take a generic methodological perspective that tackles the
general challenges and practices of applying video analysis in the learning sciences.
Then we highlight specific problematics, and solutions when video data are used
with qualitative, quantitative, or mixed-methods research in CSCL settings, provide
examples for CSCL video collections and analysis. Ethnographic, narrative,
problem-based, and design-based methods are also included.

3.1 Benefits and Challenges of Using Video Methods
in Learning Science Research

From a methodological viewpoint, researchers agree that video-based research pro-
vides highly valuable data on learning processes in collaborative settings. For
instance, they provide detailed process data that can be analyzed in an event-
based, but also in a time sequence-based approach (for analysis of discrete event
sequences, see Chiu and Reimann this volume). At the same time, such research is
highly selective and researchers’ decisions determine what is being recorded and
analyzed. Researchers’ decisions precede the production of video data, adding their
points of viewing on them at all stages of the research (Goldman-Segall 1998). On
the one hand, video technologies can be beneficial in that they represent powerful
ways of collecting video data with easy to use, relatively lightweight, and affordable
cameras. They also constitute well-designed web-platforms for storage and for
sharing video data with other researchers, and they are effective tools for deeper
analysis and video editing. Despite these notable advantages, as Derry et al. (2010)
specify, there are challenges posed to researchers who collect and use video records
to conduct research in complex learning environments. These challenges include
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developing or finding appropriate analytical frameworks and practices for given
research goals; identifying available technologies and new tools for reporting, and
sharing videos; and, protecting the data and rights of participants, i.e., ethics and
privacy issues. Blikstad-Balas (2017) adds further key challenges: contextualization,
(getting close enough to a situation to detect details, but always keeping an extra eye
on the context); magnification (magnifying small details that might be irrelevant for
learners in the situation, even if it may be critically important to researchers);
representation (presenting data in a way that others can understand and follow
scientific interpretations).

With respect to the tension between the aforementioned benefits and challenges,
Derry et al. (2010) suggest careful consideration of the different phases in the
practice of using video analysis and interpretation of results. In each of these phases,
researchers must be aware of the consequences of their selections, decisions, and the
procedures they apply.

3.2 Specification for CSCL Research—Selected Research
Examples

In CSCL, we consider specific issues related to the use of video data in computer-
supported and collaborative learning. An additional challenge for CSCL settings is
that researchers have to integrate or synchronize data streams on social interactions
or conversations (recorded in a physical space) with further data (e.g., screen
recording or logs of human–computer interactions). How can this be accomplished
in practice? The following three examples illustrate possible solutions: First, a case
study of a qualitative and in-depth analysis of the collaboration process based on
online verbal communication, where video was used as an additive. Second, an
exploratory study following N¼ 5 groups over a time span of a 6-week course where
video analysis based on coding and counting was central and both conducted and
reported in a very distinguished way. Third, an example from experimental research
with a sample of N ¼ 24 pairs of learners where video analysis was used in a
complex and multileveled mixed-methods approach.

In the first example, Vogler et al. (2017) report a case study on the emerging
complexity of online interactions and the way participants contribute through mean-
ing making in a classroom discussion that took place in a CSCL environment. The
research question was how meaning emerges from the collective interactions of
individuals. In particular, the researchers investigated how the small groups intro-
duced, sustained, and eventually closed a discussion topic. Therefore, computer-
mediated discussions of small student groups in class were analyzed. Data were
collected by means of screen recording (Camtasia software) for capturing the
participants’ activities on the computer (e.g., any changes that occurred on the screen
display, typing, deleting, or opening of online resources). Further on, the researchers
captured by means of four video cameras the activities and interactions that took
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place in the physical classroom—i.e., the small groups of two to three participants
were recorded (e.g., eye gaze away from the screen, body movements, and accessing
offline materials). In addition, trained observers took ethnographic notes. From the
collected online conversations, the researchers created transcripts, coherence maps
(for an example, see Fig. 1), and then spreadsheets showing how individual com-
ments were connected and how threads and topics evolved (Vogler et al. 2017). The
authors report on microanalyses of those learners’ discourses and present a detailed
analysis of the life cycles of two selected discussion threads. The video recordings
from the four classroom cameras were used as additional data together with the
researcher’s observations. The data streams were synchronized by means of a
tedious process that had to be done manually prior to analysis. It would have been
interesting to couple different data sources (screen recordings, written discussion
threads, and video recordings of nonverbal behaviors) using complex and elaborate
visual analysis methods. A point to which we will return below.

In the second example, Näykki et al. (2017) examined, in an exploratory study,
the role of CSCL scripts for regulating discussions during a during a 6-weeklong
environmental science course in teacher education. The scripts (i.e., prompts
presented on tablet computers) aimed at supporting the planning and reflection of
the collaborative process. The authors compared processes of scripted and
non-scripted collaborative learning asking how socio-cognitive and socio-emotional
monitoring would emerge in groups depending on the (more or less) active use of
such scripts. They also investigated how monitoring activities would transfer to
subsequent task work. The study took place in a classroom-like research space and
video data were collected by means of a 360� recording method (for details, see:
https://www.oulu.fi/leaf-eng/node/41543). The authors extracted 30 h of video data
(discussions, movements, and gestures) from five student groups that were repeat-
edly captured five times. A multistep analysis method was applied for analysis: the
video data were first segmented into 30-s events. Each 30-s segment was annotated
by a researcher with a description of what had occurred within the segment resulting
in a content log of each video (e.g., group finishes task; one person shows their
created mind map to others, group discusses task completion, suggestions on further
proceeding). The content log of each video was complemented with a comprehen-
sive memo of the most salient observations. In a second step, each 30-s segment was
observed to see if group members showed socio-cognitive and socio-emotional
monitoring (i.e., the behaviors associated with the understanding and progress of
the study-like task, content understanding, socio-emotional support). The subse-
quent development of categories and coding procedure is described thoroughly in
Näykki et al. (2017). Twenty-five percent of the video data were also coded by an
independent coder. Upon this data, frequency analysis was applied for further
statistical hypothesis testing. Time-based video segmentation was also applied by
Sinha et al. (2015) studying collaborative engagement in CSCL groups, but here the
video segments were subjected to observer ratings of the quality of collaborative
engagement in small groups (high, moderate, or low) and used for qualitative case
studies.

In the third example, N ¼ 24 pairs of students were investigated when learning
with advanced digital tools in history lessons (Zahn et al. 2010). Two conditions
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Fig. 1 Example of a coherence graph kindly with friendly permission by Jane Vogler
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supporting collaborative learning were compared: one where students used an
advanced web-based video tool (WebDIVER, see Pea and Hoffert 2007) and one
where students used a simple video player and text tool (controls). The advanced tool
allowed cutting out of details from video sequences and extracting those “pieces of
video” in order to comment on the details. Students’ interactions with technology
were captured by means of screen recording (Camtasia Studio by TechSmith) and
dyadic social interactions were recorded by means of a webcam. In order to analyze
these data, a mixed-methods strategy was applied in combining both types of data in
a two-step coding procedure (for subsequent quantitative analyses) and integrated
activity transcripts (for subsequent qualitative case studies). Trained observers first
watched the video recordings of social interaction to identify emergent behavior
categories and then applied a process of coding and counting. Eight categories of
verbal interactions were found in this process (e.g., content-related talk, video-
related talk, technical issues talk, help seeking, etc.). The relative amounts of time
spent for talking in the categories, related to total talking time, were then calculated
and compared between conditions.

Transcripts of learning episodes were produced for deep analyses of selected
cases and specific categories (e.g., content-related talk) from the different conditions.
The transcripts synchronized the students’ conversations and interactions with
digital tools (e.g., typing, submitting comments, playing video, watching, stopping
video, rewinding, making marks with an advanced video function, etc.). The tran-
scripts were analyzed according to Barron (2003) as “localized accounts” of “suc-
cessful learning.”

Based on this qualitative approach, it would be interesting in further research to
return to a quantitative strategy by counting collaboration patterns in dyads from
both conditions and compare their prevalence statistically thereby testing for signif-
icance. Yet, limited resources often force research to disclaim such mixed-method
approaches. Future perspectives, however, include automated analyses that could
render this option feasible.

In sum, from these examples, it can be noted how a number of decisions were
made in the phases of video data collection and analyses, starting from the number
and types of cameras used as well as their placement in the investigated scene; to the
number of groups and group sizes under scrutiny; the duration and frequency of
video data collection; the decision of using transcripts for qualitative in-depth
analysis versus developing categories to be coded and counted or both; the using
of extra-visualizations or verbal comments for data exploration; and, to the selecting
of results to be presented in a scholarly publication.

4 The Future

Video analysis has evolved rapidly alongside recent technological progress (e.g.,
mobile eye-tracking, social computing, virtual reality). In this section, we will look
ahead and include developments such as tracking and automatic data analysis
methods from social computing technologies.
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4.1 Eye-Tracking in CSCL Research

Eye-tracking as a method to investigate learning behaviors has been widely used in
individual learning settings in the last few years (for an overview, see Alemdag and
Cagiltay 2018; Lai et al. 2013). Mobile eye-tracking, for example, was applied to
research on informal learning in museums (Mayr et al. 2009; Wessel et al. 2007)
where researchers could reflect on eye-tracking videos afterward together with
visitors in order to gain insights into motivational factors and possible effects of
exhibition design on learning during a museum visit (vom Lehn and Heath 2007).

Although using eye-tracking in CSCL is not unknown (e.g., Stahl et al. 2013), it
still seems rather uncommon. Since 2013, only few studies were published that used
eye-tracking as a method in CSCL research. Among these are the studies by
Schneider et al. (2016), Schneider and Pea (2013, 2014), Sharma et al. (2017), and
Stahl et al. (2013) that emphasize the advantages and possibilities of eye-tracking as
a method to support and research collaboration. Schneider and Pea (2013) investi-
gated collaborative problem-solving situations, where dyads saw the eye gazes of
their learning partner on a screen. The authors found that this mediated joint visual
attention helped dyads achieve a higher quality of collaboration and increased
learning gains. These results indicate that joint visual attention in collaborations is
of great importance in problem-solving settings, as it fosters an equal understanding
of the problem (Stahl et al. 2013; Zemel and Koschmann 2013). In a follow-up
study, Schneider and Pea (2014) examined collaborative learning processes in dyads
working remotely in different rooms. Similar to their previous study (Schneider and
Pea 2013), participants were able to see the gaze of their learning partner on the
screen. Using eye-tracking data, Schneider and Pea (2014) could roughly predict
collaboration quality with an accuracy between 85% and 100%. Hence, joint atten-
tion (which involves gaze) is an important nonverbal predictor and indicator for
successful collaboration. In addition, Schneider et al. (2016) investigated the way
users memorize, analyze, collaborate, and learn new concepts on a tangible user
interface (TUI) in a 2D versus 3D interactive stimulation of a warehouse.
Eye-tracking goggles were used as a method to further investigate collaboration
processes in colocated settings. Results suggested that 3D interfaces fostered joint
visual attention which significantly predicted task performance and learning gains.
The little existing research about using gaze in CSCL has demonstrated that
eye-tracking data contributes highly relevant and important insights into collabora-
tive processes (see also Schneider et al. this volume). Sharma et al. (2017) elaborated
that “eye-tracking provides an automatic way of analyzing and assessing collabora-
tion, which could gain deeper and richer understandings of collaborative cognition.
With the increasing number of eye-tracking studies, in collaborative settings, there is
a need to create a shared body of knowledge about relations found between gaze-
based variables and cognitive constructs” (p. 727).

With eye-tracking devices, especially mobile eye-trackers, becoming cheaper and
widely available, we expect increases in eye-tracking studies in future CSCL
research. For this reason, theoretical frameworks for eye-tracking research in
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