
This article was downloaded by: [107.184.81.147]
On: 30 October 2014, At: 09:13
Publisher: Routledge
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,
UK

Journal of the Learning
Sciences
Publication details, including instructions for
authors and subscription information:
http://www.tandfonline.com/loi/hlns20

Programming Pluralism: Using
Learning Analytics to Detect
Patterns in the Learning of
Computer Programming
Paulo Bliksteinab, Marcelo Worsleya, Chris Piechb,
Mehran Sahamib, Steven Cooperb & Daphne Kollerb

a School of Education, Stanford University
b Computer Science Department, Stanford University
Accepted author version posted online: 04 Sep
2014.Published online: 24 Oct 2014.

To cite this article: Paulo Blikstein, Marcelo Worsley, Chris Piech, Mehran Sahami,
Steven Cooper & Daphne Koller (2014): Programming Pluralism: Using Learning
Analytics to Detect Patterns in the Learning of Computer Programming, Journal of the
Learning Sciences, DOI: 10.1080/10508406.2014.954750

To link to this article:  http://dx.doi.org/10.1080/10508406.2014.954750

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the
information (the “Content”) contained in the publications on our platform.
However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness,
or suitability for any purpose of the Content. Any opinions and views
expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the
Content should not be relied upon and should be independently verified with
primary sources of information. Taylor and Francis shall not be liable for any

http://www.tandfonline.com/loi/hlns20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10508406.2014.954750
http://dx.doi.org/10.1080/10508406.2014.954750


losses, actions, claims, proceedings, demands, costs, expenses, damages,
and other liabilities whatsoever or howsoever caused arising directly or
indirectly in connection with, in relation to or arising out of the use of the
Content.

This article may be used for research, teaching, and private study purposes.
Any substantial or systematic reproduction, redistribution, reselling, loan,
sub-licensing, systematic supply, or distribution in any form to anyone is
expressly forbidden. Terms & Conditions of access and use can be found at
http://www.tandfonline.com/page/terms-and-conditions

D
ow

nl
oa

de
d 

by
 [

10
7.

18
4.

81
.1

47
] 

at
 0

9:
13

 3
0 

O
ct

ob
er

 2
01

4 

http://www.tandfonline.com/page/terms-and-conditions


THE JOURNAL OF THE LEARNING SCIENCES, 00: 1–39, 2014
Copyright © Taylor & Francis Group, LLC
ISSN: 1050-8406 print / 1532-7809 online
DOI: 10.1080/10508406.2014.954750

Programming Pluralism: Using Learning
Analytics to Detect Patterns in the Learning

of Computer Programming

Paulo Blikstein
School of Education and Computer Science Department

Stanford University

Marcelo Worsley
School of Education
Stanford University

Chris Piech, Mehran Sahami, Steven Cooper, and Daphne Koller
Computer Science Department

Stanford University

New high-frequency, automated data collection and analysis algorithms could offer
new insights into complex learning processes, especially for tasks in which students
have opportunities to generate unique open-ended artifacts such as computer pro-
grams. These approaches should be particularly useful because the need for scalable
project-based and student-centered learning is growing considerably. In this article,
we present studies focused on how students learn computer programming, based
on data drawn from 154,000 code snapshots of computer programs under devel-
opment by approximately 370 students enrolled in an introductory undergraduate
programming course. We use methods from machine learning to discover patterns
in the data and try to predict final exam grades. We begin with a set of exploratory
experiments that use fully automated techniques to investigate how much students
change their programming behavior throughout all assignments in the course. The
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2 BLIKSTEIN ET AL.

results show that students’ change in programming patterns is only weakly pre-
dictive of course performance. We subsequently hone in on 1 single assignment,
trying to map students’ learning process and trajectories and automatically iden-
tify productive and unproductive (sink) states within these trajectories. Results show
that our process-based metric has better predictive power for final exams than the
midterm grades. We conclude with recommendations about the use of such methods
for assessment, real-time feedback, and course improvement.

Scholars have been advocating for the benefits of student-centered, inquiry-based,
and project-based learning environments for decades (Dewey, 1902; Freire, 1970;
Montessori, 1964, 1965; Papert, 1980). Although this vision has captured the
hearts and minds of educators since the turn of the 20th century, its need and
feasibility has come under attack several times during the past decade (e.g.,
Kirschner, Sweller, & Clark, 2006; Klahr & Nigam, 2004). In recent years, how-
ever, because of the transformed societal and economic environment and the
urgent need for higher level, complex problem-solving skills (Levy & Murnane,
2004), the need for those new approaches has made a strong comeback both at the
K–12 level (e.g., Barron & Darling-Hammond, 2010; Blikstein, 2013) and in engi-
neering education (Dutson, Todd, Magleby, & Sorensen, 1997; Dym, 1999; Dym,
Agogino, Eris, Frey, & Leifer, 2005). In addition, the rapid growth of massive
open online courses has increased the need for scalable pedagogies that go beyond
the lecture and for automated assessments that go beyond the multiple-choice
tests.

We argue that developing new automated data collection and analysis tech-
niques, rather than automating and scaling up the outdated, behaviorist-inspired
teaching and assessment approaches that have dominated educational institutions,
could offer new, scalable opportunities to advance student-centered, project-
based learning. More fine-grained data collection and analysis techniques might
help advance constructivist approaches by revealing students’ detailed trajecto-
ries throughout a learning activity, helping designers identify better scaffolding
strategies, alleviating assessment bottlenecks in large-scale implementations of
project-based learning, offering rich real-time feedback that allows practition-
ers to tailor their instruction, and providing unprecedented insight into students’
cognition (Berland, 2008; Blikstein, 2009, 2011a, 2011b, 2013; Roll, Aleven, &
Koedinger, 2010). These techniques could offer novel insights into learning, espe-
cially when students have ample space to generate unique solutions to a problem,
which is common in activities such as building a robot or programming a com-
puter. What insights could we gain by increasing the rate, detail, and automaticity
of observation while using machine-learning algorithms to find patterns in these
complex data? Computer programming is an especially appropriate task for testing
these methodologies for three reasons. First, researchers have noted that computer
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PROGRAMMING PLURALISM 3

programming can itself be regarded as a record of students’ cognitive processes
(Papert, 1980, 1987; Pea, Kurland, & Hawkins, 1987). Second, collecting snap-
shots of students’ work is technologically unproblematic. Third, there has been
much interest in promoting computational thinking in K–16 education (National
Research Council, 2012; Wing, 2006), researching various strategies and curric-
ula for the engagement of children in learning to program (diSessa, 2000; Kafai,
2006; Maloney, Peppler, Kafai, Resnick, & Rusk, 2008), as well as developing
new programming languages for education. Given that computer programming is
becoming more popular in schools and after-school programs, we hope that our
work will have wide applicability in K–16 education for a range of age groups and
types of programming languages.

In this article we use an automated system to capture snapshots of students’
code during programming assignments throughout an introductory undergraduate
course in programming methodology and then use machine-learning techniques to
track students’ progression. We show that patterns and commonalities can be iden-
tified even within the highly personal trajectories of hundreds of students and that
those patterns can both illuminate students’ programming behaviors and predict
their future performance on exams.

Our data consist of more than 154,000 code snapshots captured from the
assignments of 370 students. The first set of experiments looks for patterns across
several assignments and tries to correlate those patterns with students’ assignment
and exam grades. The second study examines one single assignment in depth and
attempts to build machine learning–induced progression maps, showing that the
topologies of such maps are correlated with course performance.

PREVIOUS WORK

There have been several efforts to assess student learning in computer pro-
gramming (Basawapatna, Koh, Repenning, Webb, & Marshall, 2011; Ioannidou,
Bennett, Repenning, Koh, & Basawapatna, 2011). In this section, we situate our
work within this landscape by outlining paradigms that range from outcome-
based to process-based assessments. Seminal work on microgenetic methods
(Schoenfeld, Smith, & Arcavi, 1991; Siegler & Crowley, 1991) and microethno-
graphies (Nemirovsky, 2011) has demonstrated the value of greatly increasing the
frequency and level of detail in the analysis of learning trajectories. Educational
data mining and learning analytics methods (Aleven, Roll, Bruce, & Kenneth,
2010; Baker, Corbett, Roll, & Koedinger, 2008; Baker & Yacef, 2009; Roll,
Aleven, McLaren, & Koedinger, 2011) now promise to enable the utilization
of even higher frequency data and enable the discovery of deep patterns in the
data that would otherwise remain unobserved, allowing for richer examination of

D
ow

nl
oa

de
d 

by
 [

10
7.

18
4.

81
.1

47
] 

at
 0

9:
13

 3
0 

O
ct

ob
er

 2
01

4 



4 BLIKSTEIN ET AL.

processes instead of outcomes. Automated outcome-based assessments in com-
puter science require very little human intervention, but they ignore process.
Process-based assessments, however, are typically mediated through direct human
observation and are difficult to scale. Our work is intended to leverage the affor-
dances of both ends of this spectrum, and thus we present a collection of prior
work about these two types of assessments.

Assessment in Computer Science Education

Traditional approaches to the automated assessment of programming tasks have
focused on outcomes (Cooper, Cassel, Cunningham, & Moskal, 2005; Fuller et al.,
2007). A student’s program is automatically run against a battery of test cases to
analyze its correctness and efficiency (College Board AP, n.d). Despite the effi-
ciency of these methods for grading students, researchers have tried to emphasize
that programming is not just the ability to generate code; it may also be regarded
as a way of thinking, decomposing, and solving problems (“Computing Curricula
2001”; Marion, Impagliazzo, St. Clair, Soroka, & Whitfield, 2007). When trying
to analyze these other goals, researchers have found unclear or counterintuitive
interactions between prior programming knowledge and performance in com-
puter science courses, as well as students’ knowledge and their ability to apply
it to real-world problems, so there are several open questions about the actual
constructs being measured when students engage in traditional assessments in
computer science courses.

For example, Simon et al. (2008; Simon, Chen, Lewandowski, McCartney,
& Sanders, 2006) and VanDeGrift et al. (2010) examined the notion of “being”
and thinking like a computer scientist by investigating students’ ability to apply
computer programming to real-world problems (common sense computing). They
challenged learners to utilize a technique from computer science, such as sort-
ing or search, to complete an everyday task. Simon et al. (2006) found that even
before beginning formal computer science instruction, students have some knowl-
edge of core constructs such as looping and sorting, but they do not understand
or utilize these concepts as experts would. As a result, they observed a decrease
in student performance on real-world computing tasks after the completion of
an introductory computer science curriculum. In the realm of debugging, a sim-
ilar phenomenon was observed by Simon et al. (2008), who reported that even
though students exhibited preexisting expert-level skills for troubleshooting prob-
lems (such as examining the structure of problems and doing incremental testing),
they were not able either to efficiently identify problems or to evaluate when a
strategy should be abandoned. Similar results about the knowledge of logic were
reported by VanDeGrift et al.

Counterintuitive findings of this kind prompted the research community to con-
sider that the problem was more intricate, and this has prompted scholars into a
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PROGRAMMING PLURALISM 5

more fine-grained and process-oriented analysis of student work. Soloway and
Ehrlich (1984) pioneered much of this field through their work on the program-
ming strategies of novices and experts. In their analysis, they typified experts
as possessing two primary characteristics: (a) the ability to plan a program and
(b) sufficient syntactic knowledge to implement their plan. Soloway and Spohrer
(1988) later extended this approach through bug logging, which logged program
errors. Even though their analysis did not exhaustively capture students’ code
snapshots, the system allowed them to monitor the type and quantity of errors that
students encountered. Results showed that the majority of bugs were indicative
of planning errors as opposed to lack of knowledge about the programming lan-
guage. This study was an early indication of the impact of planning on students’
programming processes. Much later, Jadud (2006) introduced the idea of looking
at successive compilations in order to track the progression of a program. He
focused mostly on the types of syntactic errors that students generate and found
that most were relatively simple, but when they occurred in large numbers, they
significantly reduced the time available for students to study more essential com-
ponents of programming. By pointing to these elements, Jadud was one of the
first to systematically categorize errors and challenges that students run into in
introductory programming courses. However, he could not study more elabo-
rate behaviors because he only had access to data from a very limited number
of students.

Blikstein (2009, 2011b) utilized thousands of complete code logs drawn from
nine subjects who were engaged in a 4-week programming assignment. He pro-
posed a set of novel techniques for capturing code snapshots over extended
assignments and the use of automated techniques to analyze them. His focus
was to identify salient aspects of expert and novice programming styles, uncover-
ing unique logical and stylistic elements. Results showed that more experienced
students were more likely to adopt an incremental coding strategy (trying to
debug and advance their code without external help through myriad trial-and-error
attempts), whereas novices would update their code in larger batches, copying and
adapting code from sample programs and other external sources. He also demon-
strated that different stages in the programming process would exhibit distinct
compilation frequencies and types of error messages.

Curiously, a common approach that emerged in the field was to catego-
rize students into several types based on their behavior or debugging pattern.
Perkins, Hancock, Hobbs, Martin, and Simmons (1986), for example, investi-
gated students in a laboratory environment programming in BASIC. They typified
their subjects according to the simple dichotomy of movers and stoppers. Booth
(1992), Cope (2000), and Bruce et al. (2004), instead of using students’ code,
used phenomenography and facilitated programmers to vocalize their internal
experience while programming. Based on students’ patterns of participation
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6 BLIKSTEIN ET AL.

and learning, they identified five programming pathways typically followed by
students: followers, coders, understanders, problem solvers, and participators.

But the most well-known attempt to systematize categories of programmers is
framework defined by Turkle and Papert (1992), which proposed the existence of
tinkerers and planners. Different from most of the previous research, their goal
was not simply to create categories but to put forth the idea of epistemological
pluralism and show that both groups of students could achieve at a high level while
taking different paths and approaches. Papert and Turkle attempted to show that
even though we would conventionally consider the planning behavior as superior,
planning and tinkering should not be seen as desired behaviors, but just diverse
ways of approaching the same problem without necessarily achieving superior or
inferior results. More recently, other researchers tried to find these categories and
validate these initial ideas in much larger data sets using data mining techniques
(Berland & Martin, 2011). They clustered large numbers of student logs and found
that most successful students followed either the tinkerer or the planner approach.
Tinkerers make a series of incremental changes to their programs in order to create
a finished solution. Planners identify a course of action and implement a plan to
systematically produce their final program submission.

The tinkering and planning categories made their way outside of the education
research. Researchers in human–computer interaction have also investigated them.
Beckwith et al. (2006) and Burnett et al. (2011) conducted studies on how males
and females differ in their strategies for fixing bugs in programmable spreadsheet
software. The main findings of these two studies were that women tinkered much
less than men, which in turn caused them to introduce more bugs into the system.
Women also did not use the unexplained features of the system as frequently as
men did. The authors showed that such categories of behaviors are important and
can have an impact on performance—namely, counterintuitively, tinkering was
an important determinant of performance because it allowed users to find new
features in the system. After a research-based training program (which addressed
gender self-efficacy), the authors found that the difference was greatly reduced
in both studies. Tinkering and planning behaviors in human–computer interaction
were also studied by Fern, Komireddy, Grigoreanu, and Burnett (2010), who used
machine-learning techniques in place of traditional statistical methods to treat,
filter, and cluster multidimensional data sets. Their algorithms categorized users’
actions into typical microstreams of five or six consecutive actions and examined
measures such as the frequency and ratio of successful to unsuccessful actions.

The fact that so many researchers ended up using categories to describe how
students engage in programming reveals a tacit recognition of the importance of
epistemological pluralism. Perhaps because programming was a relatively new
area in educational research, scholars were more open to observing these differ-
ent pathways. One current concern would be that as computer science education
becomes more widespread and mainstream, this recognition of these multiple
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PROGRAMMING PLURALISM 7

ways to learn would give place to monolithic curricula, as we observe in many
other disciplines.

We found, however, gaps in the literature—little research exists on the devel-
opment and study of scalable process-oriented approaches. We identified three
main problems in this area: (a) Most studies, with the exception of the very recent
ones by Berland and Martin (2011) and Fern et al. (2010), were too small, rely-
ing on manual coding and observations; (b) larger studies did not capture data at
the level of detail required to build complex models of students’ programming
process; and (c) the tasks proposed to students were quite constricted, often in
the form of laboratory studies rather than real-world programming assignments.
In our present work, we address this gap in the research through the simultaneous
study of open-ended tasks and large numbers of students and the application of
powerful new process-based, machine-learning techniques.

Expanding the methodology of Blikstein (2009, 2011a, 2011b), who designed
schemes to capture, filter, and analyze code snapshots, we instrumented the pro-
gramming environment used by students (the Eclipse platform) to capture and
record complete snapshots of students’ code whenever they saved or compiled
their programs (Piech, Sahami, Koller, Cooper, & Blikstein, 2012).

Using machine-learning techniques, we then demonstrate that students’ pro-
gramming paths contain robust commonalities and patterns, and these patterns
may be used predictively to infer students’ subsequent programming steps and
performance in the course. We conduct two types of explorations: The first is
a series of simpler experiments about the relationship between patterns of code
update and course performance, with a special focus on how these patterns change
over several assignments. In these first experiments, we only look at how many
lines of code were added or modified, without looking at the content of the code.
In Study 2, we delve deep into the content of the code snapshots. Using a vari-
ety of machine-learning techniques, we transform the myriad code snapshots into
maps of states that show the progress of the students’ work and the correlation of
this work with student performance.

Because the algorithms and data collection schemes used in this article may
be unfamiliar to some members of the learning sciences community, we provide
more detailed explanations of all of them in the supplemental material.

PRELIMINARY EXPLORATIONS: CAN LEARNING ANALYTICS
TECHNIQUES DETECT PATTERNS IN STUDENTS’ TRAJECTORIES

OVER SEVERAL ASSIGNMENTS?

Our approach in this section is to develop an increasingly complex exploratory
analysis of the data, starting from the simplest possible type (regression of aggre-
gate data). The results (or lack thereof) guide the next step up in complexity:
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8 BLIKSTEIN ET AL.

further disaggregation of the data, and other methods (i.e., clustering). There
are two goals for this approach: The first is the search of possible low-hanging
fruits in our analysis, given the high computational cost of some machine-learning
algorithms. The second goal is to illustrate how a large learning data set can be
explored using a series of simple investigations of increasing complexity. This
second goal could be particularly useful to the learning sciences community, as
we start from well-known statistical techniques and move toward more elaborate
analysis in small steps.

In this first series of experiments, we were interested in general purpose, fully
automated techniques that would reveal patterns and meaningful trajectories in
our raw data without human labeling (which is labor intensive) or any analysis of
the actual content of students’ code (which requires considerable computational
power). Rather than searching for predictive models of student performance, we
simply asked the question, Can relatively simple quantitative measures capture
differences in students’ behaviors when programming, and are those related to
course performance? Then in Study 2 we used machine-learning techniques of
much higher complexity that looked into the content of the code.

Therefore, when considering these explorations, the reader should bear in mind
that our main goal is to explore initial metrics that may enable future research on
programming patterns, or at least reveal research paths that might not be worth
pursuing. Given that this is the beginning of trying to use this type of process data
in education, we consider that it is important to document even very early attempts
to create these metrics so that they can be improved upon.

The main thrust of our explorations into metrics of students’ programming
patterns is the study of the two hypothesized behaviors defined by Papert and
Turkle (1992): tinkering and planning.

General Methodological Notes and Dimensions of Analysis

We attempt to measure students’ behaviors in three experiments, which always
begin with the comparison of two consecutive code snapshots and the determi-
nation of how much change has taken place from one snapshot to the next as
measured by the number of characters or lines of code that students have added,
removed, or modified. Thus, for each code snapshot generated by a student, we
calculate a set of six measures: number of lines added, lines deleted, lines modi-
fied, characters added, characters removed, and characters modified. We call this
set of measures the code update differential. These measures exclude comments
and are based on computing the line-by-line difference between snapshots.1 Our

1Modification of a line was defined to have taken place anytime a new line was 30% different from
the same line in the previous snapshot. The designation characters modified refers to the absolute value
of the difference between the original and the modified lines. The 30% value was selected to strike a
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PROGRAMMING PLURALISM 9

FIGURE 1 Two consecutive snapshots of student code in which three lines were added.
In this case, the code update differential is (3, 0, 0, 71, 0, 0): 3 lines added, 0 lines deleted,
0 lines modified, 71 characters added, 0 characters deleted, 0 characters modified.

choice for this metric is based on the fact that these data, in addition to being
relatively unproblematic to extract from our data set, could be strongly related
to the ways in which students plan and execute their work while programming,
and thus would be a good compromise between low computational cost and
usefulness.

In Figure 1 we see an example of two consecutive snapshots of student code in
which three lines of code were added but nothing else was deleted or modified.

We focus on the size and frequency of code updates. As students add and
remove lines of code, they can do so in large chunks or small pieces (size) and
either very frequently or in just a few episodes (frequency). The combination of
size and frequency is what we call the code update pattern.

In most of our analysis we assume that small, frequent code changes could
represent episodes of tinkering, whereas larger, less frequent code changes could
represent episodes of planning. We sometimes assume that planning would be
the more advanced and desired behavior, as the prompts that students received
for all assignments contained consistent advice about planning and programming
methodology. We are not implying that it is, universally, the best possible behavior
(experts could tinker as well, but very few experts were enrolled in this intro-
ductory class), however it was the behavior emphasized in this class and in the
grading of the assignments. This assumption is important for when we compare
the code snapshot data with course grades, but we acknowledge the limitations of
this assumption when necessary.

balance between detecting modifications and not having any modifications. When we looked at the
data, using values closer to 40% resulted in the inclusion of lines that did not appear to truly be modi-
fications (low precision). In contrast, using 20% resulted in poor recall, such that many modifications
were overlooked. Hence, we chose a similarity score of 30% as the criterion.
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10 BLIKSTEIN ET AL.

FIGURE 2 Summary of the three experiments in our preliminary explorations: We begin
with one data point per assignment (“Average”), then four (“Segments”), 12 (“Distribution”),
and 30–100 (“Entire curve”) in Experiment 3. Segm = segment.

In Figure 2 we have a summary of the experiments and methods. In Experiment
1, we first try to relate the average update size for each student and his or her
grades using a regression (one data point per assignment). Next, instead of using
the average update size for each assignment, we break each assignment into four
segments and start using clustering techniques (four data points per assignment).
In our second experiment, we further calculate the per-segment distribution of
code update sizes using three bins (large, medium, and small) and again use clus-
tering techniques (12 data points per assignment). Finally, in Experiment 3, we
use the entire code update pattern instead of just the binned sizes of the updates
(30–100 data points per assignment). We generate code update curves for each
student for each of the four assignments, use the similarity between those four
curves to calculate a general score for how much each student’s pattern changed
during the course, and try to find correlations between the amount of change and
course grades.

In summary, we start with the aggregate data, then segment them in time, then
resegment them in terms of the distribution, and finally use all of the individual
data points without any aggregation. Consequently, the dimensionality of the data
increases, and we accordingly move from traditional statistical methods (regres-
sion), to simple machine-learning algorithms (clustering), and finally to similarity
metrics.

Data Collection

The data for this analysis were derived from four programming assignments
completed over several weeks of instruction by two cohorts of students in two aca-
demic quarters (spring and fall of 2012). The spring data consisted of assignments
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PROGRAMMING PLURALISM 11

completed by 74 students and included 14,000 code snapshots in total. The fall
data consisted of about 140,000 code snapshots generated by 272 students.

All students were undergraduates or graduate students enrolled in a program-
ming methodology course at a research university. Class lectures, which met three
times a week, were supplemented by weekly discussion sections with teaching
assistants. Students completed seven assignments during a 10-week period (we
refer to them as Assignment 0, Assignment 1, and so on). Out of the seven assign-
ments, three were not used: Assignment 0 was done in a different programming
language, Assignment 5 was only a series of quick programming exercises and not
a proper programming project, and Assignment 6 had excessive missing data due
to technical problems in the data capture (the remaining assignments are described
in detail in the supplemental material).

Experiments 1 and 2: Does the Average Size of the Code Updates
Correlate With Course Performance?

Our first hypothesis about possible patterns in the data was that advanced or higher
performing students would plan more, and thus write larger chunks of code at a
time, and that novices would tinker more, and therefore make small updates to
the code frequently. Our goal for the first experiment was to answer whether the
average size of the code updates correlates with course grades.

The simplest way to go about answering this question was to do a simple
regression between exam grades and average size of the code updates per stu-
dent. However, the regression showed no significant results, F(1, 279) = 0.005,
p < .94. We hypothesized that this could have been an artifact of the averag-
ing: Students could start an assignment making small updates and end it making
large ones, but the averaging would erase these changes. We then sliced the data
into more segments to mitigate this effect, dividing each assignment into four
equal time-based segments, and extracted the average of each segment. With four
data points per assignment per student, we turned to basic clustering techniques
from machine learning. Clustering algorithms are used to segment multidimen-
sional data points into distinct groups: They iterate several times through the data,
calculating how different distinct clusters would be given initial parameters, and
pick the parameters that maximize the difference between the groups (there are
many types of clustering techniques: k-means, x-means, and many others; see
the supplemental material). With these more detailed data, we used the x-means
clustering algorithm2 to see whether the resulting clusters would attain different
average grades in the course. Even though the clusters appeared to be significantly
different from each other, the results with regard to grades showed effect sizes on

2We attempted to use k-means as well, and the algorithms converged to the same clusters.
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12 BLIKSTEIN ET AL.

the order of 0.2, which is quite small (see the supplemental material for a full
explanation of this algorithm), so we were still unable to make claims about the
impact of the code update size on course performance. After these weak results,
we considered that the averaging of the code update size per segment was still
occluding differences among students. Perhaps the distribution of update sizes
was more informative than the average—for example, some students could have a
bimodal update size distribution, whereas others would have a predominant size.
Thus, we used the distribution of update sizes for each segment (we calculated
the proportion of large, medium, and small changes, so we had 12 data points per
assignment). In this second analysis, the x-means algorithm again produced two
quite distinct clusters, but the difference in average final grades corresponded to a
Cohen’s d of 0.21, which is still quite small. In these two experiments, we tried to
use increasingly high levels of detail about the data, and more sophisticated sta-
tistical techniques, to validate our hypothesis, and results suggested that in each
experiment we got an increasingly strong distinction between the two clusters
but no predictive power in terms of course performance. Thus, it seems that the
answer to our first research question (Does the amount of tinkering, as measured
by the average size of the code updates, correlate with course performance?) was
negative.

Experiment 3: Does the Amount of Change in Students’ Programming
Patterns Predict Course Performance?

Given the relatively small effect size of the code update size on course perfor-
mance from Experiments 1 and 2, in Experiment 3, instead of focusing on the size
of the updates, we attempted to use a more sophisticated measure of students’ pro-
gramming patterns. Instead of just using the differences in size, we also included
the differences in frequency—we call the combination of size and frequency the
code update pattern. Imagine that, for Assignment 1, a student compiled or saved
her code 30 times, adding on average 25 lines of code each time. If this stu-
dent started with large updates and moved toward small updates, her curve (see
Figure 3) would have many high peaks corresponding to the first (and large) code
updates and then many small peaks at the end corresponding to small updates.

Now imagine that the same student, in the next assignment, had only large
code updates—in this case, we would see a curve with very high peaks and no
small ones. If we assume that the assignment prompts were similar, we could
hypothesize that this student changed her coding behavior—the behavior of mak-
ing small code updates in the second half of the first assignment disappeared
in the second assignment. Thus, if we had a way to compare those two curves,
and see how different they are, we could possibly detect that a student changed
her coding behavior based on the calculation of the difference between the two
curves. Fortunately, there are simple techniques in machine learning that allow us
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PROGRAMMING PLURALISM 13

FIGURE 3 Hypothetical example of a code update curve, showing large code updates at first
and smaller ones toward the end of the assignment.

to compare complex data sets even if they have different sizes, so we make use of
them in this analysis.

In this experiment, we generated curves for all students in four assignments
(1–4) and then calculated—for the same student—how different his or her curve
in Assignment 4 was from his or her curve in Assignment 3, then Assignments
3 and 2, and so on. We hypothesized that if a student had a very similar curve in
both Assignments 4 (the last) and 1 (the first), there would be very little change in
his or her code update pattern. Conversely, if the curve was wildly different, this
student was considered to have changed more his or her update pattern from the
initial to final assignments.

The research question in this experiment was, Is there a correlation between
how much those curves change and students’ performance as measured by
grades? We believe that it is reasonable to expect that the changes in these curves
would be correlated with course performance for the following reasons:

1. The course was named Programming Methodology (thus it teaches not just
programming concepts or techniques but methods), and a strong empha-
sis was given to learning systematic approaches to programming, such as
decomposition and planning.

2. It was expected that one of the learning outcomes of the course would be
that students would change the way they approached programming.
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14 BLIKSTEIN ET AL.

3. Considering that this was an introductory course, most students were
novices; very few experts took the course (arguably experts could have
different types of behaviors or come in with their own expert ways and
patterns of updating code).

Therefore, the hypothesized scenario would be that lower performing students
should exhibit little change in their update patterns, and higher performing stu-
dents would show a great deal of change in their update patterns. In what follows,
we go deeper into the methodological aspects of the experiment and then comment
on the results.

Data Standardization, Normalization, and Metrics. After we extracted
all of the data from the code snapshots and calculated the code update differ-
entials, we normalized the size of every code change relative to the class average
and standard deviation.3 Next we used two machine-learning methods to calculate
the difference between two given curves. First, we used a technique known as
dynamic time warping to stretch the curves in order to calculate the differences
between them when they had different sizes. This addressed the problem of
sequences of different lengths, as students might have produced a different num-
ber of snapshots per assignment. Second, we used a technique known as scaled
dynamic time warping distance to calculate the actual difference (or distance, in
machine-learning terminology) between two curves (more details about both of
these methodologies are given in the supplemental material).

Data Analysis and Categorization of Students. The determination of the
difference between students was done by comparing later assignments with earlier
ones. We observed whether each student’s update curve for Assignment 4 was
most similar to that for Assignment 1, 2, or 3 and how Assignment 3’s curve
compared to those for Assignments 1 and 2. Thus, we performed five pairwise
similarity comparisons for each student—three for Assignment 4 (4 and 3, 4 and
2, 4 and 1) and two for Assignment 3 (3 and 2, 3 and 1)—and chose the two pairs
that were the most different, as indicated in Table 1 .

Each student therefore could have either two, one, or zero high-change pairs.
It is crucial to understand what a high- or low-change pair means for the rest of
our analysis. If the last assignment in the course (4) was done in a similar fashion
as the first (1), we consider that there was not much change (thus 4 and 1 is a
low-change pair). Based on the simple count of high- and low-change pairs we
assigned a change score to each student and grouped students into six groups

3The normalization was meant to avoid the fact that absolute values of the changes skew the analy-
sis or erase assignment-specific characteristics that we would want to account for (instead of attributing
to individual differences).
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PROGRAMMING PLURALISM 15

TABLE 1
List of All Pairwise Similarity Comparisons

Possible Pairwise Comparisons If the Most Equal Pair Is . . . This Indicates . . .

4 and 3 | 4 and 2 | 4 and 1 4 and 1 Low level of overall change
4 and 3 | 4 and 2 | 4 and 1 4 and 2 Medium level of overall change
4 and 3 | 4 and 2 | 4 and 1 4 and 3 High level of overall change
3 and 2 | 3 and 1 3 and 1 Low level of overall change
3 and 2 | 3 and 1 3 and 2 High level of overall change

TABLE 2
Group Proportions

Group Label Percentage of Class

A (highest change) 8
B 8
C 22
D 12
E 15
F (lowest change) 35

based on it (A, B, C, D, E, F). Group A was composed of students with the high-
est degree of change from Assignments 1 to 4, and Group F was composed of
students with the lowest. Students in Group A had two of the high-change pairs
(see Table 1); those in Groups B, C, and D had just one high-change pair; and
those in Groups E and F had none. Table 2 shows the proportion of students in
each group for our data set after these calculations.

Results: Students’ Progression. We started by ranking the A–F groups in
terms of their assignment, midterm, and exam grades and then checked whether
the groups that were supposed to perform better actually had a higher grade.
Table 3 shows the rankings for all students in terms of their assignment grades.
The reader should read the table in the following way: On Assignment 2, students
in Group C had an average grade higher than that of any other group in the class;
on Assignment 4, the average grade for students in Group E was the lowest in
the class; and so on. We would expect to find Groups A and B on top of most
of the rankings, but there were some surprises. Group B was the lowest perform-
ing group on two assignments, and Group A was never the top performing group.
Those surprises were present in subsequent rankings as well. However, the reader
must remember our caveat from the beginning of this study: Our goal is to exam-
ine whether our measures have any correspondence to real-world performance
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16 BLIKSTEIN ET AL.

TABLE 3
Rankings for Five Assignments, Showing the Relative Performance for Each Group, and the

Count of High-Change Pairs

Count of High-Change Pairs

Rank
Assignment

0
Assignment

1
Assignment

2
Assignment

3
Assignment

4 6 Groups 3 Groups

1 D C C C C 5 12
2 C E A A A 7
3 A A F F D 5 9
4 F D D B B 4
5 B F E E F 1 4
6 E B B D E 3

Note. We use the symbol to indicate the number of high-change pairs in each group.

FIGURE 4 Amount of change in pattern versus grades on assignments.

measures not to build a predictive model or test a statistical hypothesis. Because
we are doing data mining in a very unstructured, noisy, and complex data set, we
are concerned with general trends and patterns. To better identify these trends,
we further aggregated the rankings by counting the number of high-change pairs
across each rank. As we move up Table 3 (thus looking at groups with better
performance), the high-change groups are clearly more dominant, which is even
more apparent when we use only three groups (see the last column of Table 3).
This confirms our expectation that these groups (A, B, C, D) would also, on aver-
age, perform better in the course than Groups E and F. The values for the count
of high-change groups are plotted in Figure 4, and they were highly correlated
despite only trending (R2 = .577), F(1, 4) = 5.45, p < .08.
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PROGRAMMING PLURALISM 17

TABLE 4
Rankings for the Final and Midterm Exams, Showing Which Group

Performed Better, and the Count of High-Change Pairs

Count of High-Change Pairs

Rank Midterm Final 6 Groups 3 Groups

1 A A 4 6
2 C C 2
3 D F 1 2
4 F D 1
5 E E 0 2
6 B B 2

Note. We use the symbol to indicate the number of high-change pairs in each
group.

When we look at exam and midterm grades we find a similar type of result,
although less statistically significant. Group A did outperform all others, but still
there were some anomalies (e.g., Group F was among the top performers on the
midterm and final examinations). Despite these surprises, a similar aggregate trend
was observed. In Table 4 we present the same analysis for the midterm and final
exam. Even though the data showed a strong correlation, it was not significant,
so we can only characterize it as a trend (R2 = .392), F(1, 4) = 2.58, p < .18.
However, a visual inspection of the plot (see Figure 5) shows that the point cor-
responding to rank = 6 could be an outlier; given that we are concerned with
general trends, if we exclude this point, we obtain an extremely strong fit (R2 =
.938), F(1, 4) = 22.09, p < .018. Also, examining the last column of Table 4, we
see that when we again break down the ranking into only three groups, the trend
of the top groups to perform better is quite apparent (6 for Ranks 1 and 2 vs. 2 for
the others).

Further verification of ranking trends. These rankings for exams and
assignments were created by comparing the average grades of a group with those
of all other groups. One possible concern with this analysis is that many of the
p values computed from the Student’s t tests were close to .05 and that we
undertook several different comparisons between groups. Some researchers use
post hoc analysis (e.g., Benjamini and Hochberg) to control for false discovery
rate. However, false discovery rate detection tends to increase the probability of
Type II error, which is the probability of missing a true discovery. Another concern
is that we undertook several pairwise comparisons for which not all differences
exhibited statistical significance at the .05 level. We could address both of these
concerns by looking at the four assignments and two examinations and computing

D
ow

nl
oa

de
d 

by
 [

10
7.

18
4.

81
.1

47
] 

at
 0

9:
13

 3
0 

O
ct

ob
er

 2
01

4 



18 BLIKSTEIN ET AL.

FIGURE 5 Amount of change in pattern versus grades on midterm and final exam.

TABLE 5
Group Rank Probabilities Based on
Assignment and Examination Ranks

Groups Probability of Ranking

A 0.008
B 0.008
C 0.016
D 0.250
E 0.006
F 0.008

the likelihood of each group receiving a given rank, or a very similar rank, across
the different metrics. For example, in this experiment, we found that Group B
ranked 6th on both the final and the midterm examination. Although it is possible
that this ranking was random, the probability of this happening (Group B receiv-
ing Rank 6 on both exams) is only 2.8%. Table 5 reports the probability of each
cluster’s ranking for the examination and assignment scores, and the probability
of randomly arriving at the cluster rankings revealed by the data was extremely
low for nearly all of the clusters that we identified. For all groups except for C
and D, the probability of randomly attaining the assigned rankings was close to
or less than .008 (which corresponds to a .05 significance level after Bonferroni
adjustment).
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PROGRAMMING PLURALISM 19

Discussion

In our three experiments, we intended to develop initial methodologies to con-
duct fully automated measures of programming activity, determining promising
directions and possible dead ends as we tried to answer the following research
question: Can relatively simple quantitative measures capture differences in stu-
dents’ behaviors when programming, and are those differences related to course
performance?

In the first two experiments, we tried to use the size of the code updates as
an indication of programming style and relate it to course performance. Both
experiments revealed that although well-defined clusters could be determined,
showing that in fact there could be real generalizable programming styles within
the cohort, these did not correlate strongly with performance in the course,
despite our attempts to slice the data in different ways. If we believe that large
code updates are related to more planning (which we find reasonable to assume
given our previous exposition), this last finding could be counterintuitive for
the computer science education community: Perhaps it is not as determinant to
success as believed.

That led us to the third experiment, in which we used not only the code update
sizes but the code update pattern, or the curve describing the time series of all
code update sizes. We also changed the approach by not measuring an absolute
per-assignment metric but looking at the amount of change in students’ update
patterns. Thus, the main component of Experiment 3 was the grouping of students
on the basis of the extent to which their programming patterns changed over the
course of the class. We initially hypothesized that students who exhibited high
change (abandoning old update patterns and developing new ones) would also be
high performers. The rationale was that students entering the class were novices,
and they would supposedly learn programming methodology and steadily adopt
the behaviors taught in class, which were primarily related to more planning and
intentional decomposition.

The results indicated that there was a connection between students’ grades and
the amount of change in their programming patterns, confirming our hypothesis
that students with higher grades would also change their programming patterns
the most. We acknowledge that the results are still not statistically strong (in the
first analysis, our best p value was .08), but our post hoc analysis was coherent
with these results for four of the six groups at the p < .05 level. In any case, given
that our goal was to provide early indication of the promise and limitations of
these techniques, this level of significance is adequate for the task at hand.

The correlations we found are just a first step in the direction of developing
measures for programming patterns such as tinkering and planning, or how much
students change their patterns, and the results seem to agree with the early lit-
erature in this nascent field, which suggests a relationship between the ways in
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20 BLIKSTEIN ET AL.

which students update their code and their programming experience (Berland &
Martin, 2011; Blikstein, 2011b). It seems that the answer to our research question
is that simple, unsupervised quantitative measures in learning analytics might be
useful for determining the existence of a pattern in the data but not necessarily the
relationship between a given pattern and students’ behavior. Given these limita-
tions, in Study 2 we turned to more complex methods to try to draw a connection
between machine learning–induced patterns, students’ programming patterns, and
students’ course performance.

STUDY 2: STUDENT PATHS IN A SINGLE ASSIGNMENT

Whereas in the three previous experiments we showed students’ progress over
several assignments, the goal of Study 2 was to examine students’ progression
within a single assignment, exploring in detail their trajectories. We chose the first
assignments in the course, Checkerboard Karel, in which the goal is to program a
robot to produce a particular pattern in two-dimensional graphical windows (see
Figure 6) of different sizes, placing beepers (the grey diamond-shaped icons) in
each of the windows. This setting utilizes an implementation of the Karel the
Robot programming language (Pattis, 1981), which uses a much circumscribed
portion of the Java programming language (Piech et al., 2012). The implemen-
tation includes commands such as “turnLeft,” “move,” and “putBeeper.” An
example of a Karel program follows, in which the robot is made to fill empty
spaces with beepers:

FIGURE 6 The Checkerboard Karel assignment: Students must program the robot to create
the pattern on the right, using a simplified programming language.
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PROGRAMMING PLURALISM 21

private void Example() {
turnRight();
move();
if (noBeepersPresent()) {
putBeeper();
}
turnAround();
move();
turnRight();
}

This assignment is ideal for a deeper machine-learning analysis because Karel
hides the complexities of real Java programming through the provision of a sim-
pler command set. Over the years, the instructors for this course, two of whom are
coauthors, have observed that a considerable number of students are able to submit
working and successful Karel assignments without any prior command of basic
programming concepts, as revealed by tests and tutoring sessions with teaching
assistants. Consequently, assessing students’ final submissions was demonstrated
to be insufficient for gauging students’ understanding of programming—thus
this data set would provide a good opportunity to investigate what takes place
throughout the entire process.

Data Collection

The Checkerboard Karel assignment allows students to gain experience with pro-
gram flow and decomposition. A full solution must work on Karel worlds of
any size and geometry. We collected 370 Karel assignments (238 from Spring
2011 and 132 from Summer 20114), with an average of 159 code snapshots
for each student (SD = 82). Each snapshot was time-stamped and could be run
through a simulator to record errors and to test functionality.

Data Analysis

Program Distance Metric. Whereas in the previous section we only utilized
the size of the code updates without examining the code itself, in this analysis
we dive into the content of the program updates. To model students’ progress
through an assignment, it was necessary to determine whether there were com-
mon intermediate states across the programs of many students. The first step was
to construct a method to compare two assignments (one from Student A, one from

4The teaching team varied between the spring and summer quarters, but the curriculum remained
unchanged.
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22 BLIKSTEIN ET AL.

Student B) against each other to determine whether they contained similar inter-
mediate states. We considered three algorithms for calculating similarity (more
details about these algorithms are in the supplemental material):

1. Bag of Words Difference: We built histograms of the different keywords
used in a program and used the Euclidean distance between two histograms
as a naïve measure of the similarity (Salton, Wong, & Yang, 1975).

2. Application Program Interface (API) Call Similarity: We ran each program
with typical inputs and recorded the resulting sequence of commands and
functions executed. We used the Needleman–Wunsch5 algorithm for global
DNA alignment (Needleman & Wunsch, 1970) to measure the difference
between the lists of commands and functions executed (or API calls) by
the two programs. API calls are a particularly good representation of Karel
programs; because they do not store variables, the entire functionality of
a program can be expressed in terms of the usage of the language’s com-
mands (e.g., turnLeft, move). This metric is more difficult to implement
for full-blown programming languages such as Java.

3. Abstract Syntax Tree (AST) Change Severity: An AST is a systematic
approach to breaking down a computer program into its constituent ele-
ments while capturing the relationships between them. It is essentially a
graphical hierarchical representation of a program that allows for com-
parison across different programs. We built AST representations of both
programs and calculated the minimum number of rotations, insertions, and
deletions needed to transform the AST of one program into the AST of
another program, using the Evolizer algorithm (Gall, Fluri, & Pinzger,
2009).

All of our similarity metrics were normalized by the sum of the distances
between the programs and the starter code (the small amount of code students
were given initially by the instructors). To evaluate each metric we had a group of
five advanced computer science students with teaching experience (whom we sub-
sequently refer to as experts) label sets of random snapshot pairs as either similar
or different. All experts looked at different snapshots, meaning that there was no
overlap in expert ratings through which to compute interrater reliability; instead,
we based our results on the assumption that the error in the labeling would aver-
age out across a large number of comparisons. This labeled data set was used
to measure how well the distance metrics could replicate the expert labels. The
experts were asked to assess similarity based on a rubric that had them identify
major and minor stylistic and functional differences between pairs of programs.

5See the supplemental material for details.
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PROGRAMMING PLURALISM 23

We selected a sample of 90 pairs of programs, capturing a balanced spectrum of
similar, dissimilar, and slightly similar code. Compared to the human labels, the
API Call Similarity performed best, with an accuracy of 86% (p < .00001) versus
55% for Bag of Words and 75% for AST Change.6

The distance metric used to build our model was a weighted sum of the AST
Change metric and a set of API similarity scores (each generated by running the
programs with a different input world). We trained a support vector machine7

with a linear kernel (Shawe-Taylor & Cristianini, 2000) to come up with the com-
position of our different distance measures that was best able to reproduce the
human labels. The values used to weight the distance measures in our composite
similarity score were the weights assigned to each distance measure by the support
vector machine.

Modeling Progress. To understand how we modeled students’ progress,
consider a hypothetical example (see Figure 7). A student begins with the starter
code given by the instructors (A) and writes code to instruct Karel the Robot to
place a single beeper in the world (B). Next she writes code to create a single row
(C), then expands the code to create two rows (D), and finally comes up with a
solution that works on worlds of all sizes (E). This trajectory has states (“program
has the capability places a single beeper,” “program can place a perfect row in all
worlds,” etc.) and transitions between these states; this set of states and transitions
is called a finite state machine (a more detailed definition of finite state machines
is given in the next section).

We can use a similar procedure to determine whether there are patterns in
the way in which different groups of students move from one state to another.
In Figure 7 we picture a simple linear sequence, but there are many ways a
student can arrive at the solution. Learning the sequence of states that students
take as they solve the assignment reveals both productive and unproductive paths,
and our main goal was to find a method for automatically categorizing students’

FIGURE 7 A sequence of states that a student could generate.

6Because the similarity metric could be biased toward assigning low similarity scores to snapshots
of assignments by the same student, we modified our algorithms to never use the similarity value
computed from the same student.

7A support vector machine is a sorting machine that learns by example. See the supplemental
material for details.
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24 BLIKSTEIN ET AL.

development paths into clusters and verify whether course performance was
correlated with the clusters. In order to develop this method, we had to address
several issues. First, we needed to identify the most typical states that students
could occupy at a given time. This entailed clustering student snapshots by
similarity. Second, we had to find the typical paths through these states and then
find similarities in these paths.

Technical Implementation. Because this section is quite technical, some
readers might want to skip it. We are aware that much of this detail might not be
relevant, but it is necessary to demonstrate the soundness of the results.

Hidden Markov model (HMM). The first step in our student modeling
process was for the system to learn (in a machine-learning sense) a high-level
representation of how each student progressed through the assignment. To enable
this process, we modeled a student’s trajectories as an HMM (Rabiner & Juang,
1986). In general terms, a Markov model is a sequence-based model for which
the likelihood of being in a particular state at a given time step is dependent only
on the state at the previous time step. In a hidden Markov model the probabil-
ity of being in any given state must be inferred from observations, because the
state itself is a hidden (latent) variable. As an example, consider a person walking
through a dark house. At any point, the person does not know what actual location
(state) in the house she occupies, yet she is able to make some observations based
on the walls and doors she can feel (observe) at her current location. Such obser-
vations allow that person to infer her true location (state) on the basis of these
observations as well as on the basis of what she believes her previous location in
the house (state in the prior time step) to have been.

The HMM we used (see Figure 8) proposes that for each snapshot, a student is
at a milestone corresponding to one of the defined programming states. Although
we cannot directly observe the state (it is a latent variable), we can observe the
code snapshots, which are approximate indicators of the state. Example states
might include “the student has just started to program,” “the student’s program can
place a single beeper,” or “the student’s program can generate two perfect rows.”
Note that these states do not need to be explicitly labeled in the model. Given the
student trace data provided, they are autonomously induced by the algorithm.

There are two key parameters in the HMM: the probability of a student going
from one state to another and the probability that a given snapshot actually follows
from a particular milestone. Modeling students’ progress in this way makes a
simplifying assumption: Given the present state, the future state of a student’s
code is independent of the past states. This assumption is not entirely correct, as
students still remember and learn from past experiences within a given assign-
ment. Nevertheless, this simplification maintains algorithmic tractability while
remaining useful for finding patterns.
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PROGRAMMING PLURALISM 25

FIGURE 8 The program’s hidden Markov model of state transitions for a given student. The
node “program t” denotes the code snapshot of the student at time t, and the node “state t”
denotes the high-level milestone that the student is in at time t.

Dynamic time warping. We captured snapshots every time students com-
piled or saved their code, but this is not an accurate representation of a unit of
work. Different students might exhibit different types of behaviors regarding how
often they save or compile their programs. However, a feature of our approach
is that it assumes a relatively constant rate of change between observations, so
we again used dynamic time warping to compare the nonsynchronized data from
different students.

Understanding the next steps in this model requires a definition of a finite state
machine and an explanation of how it works. A finite state machine is a directed
graph containing a finite set of states (the nodes in the graph) along with a finite
set of transitions between those states (the arrows in the graph). The transitions
indicate how a process can move from one state to another over time. For example,
a finite state machine modeling how students transition between different courses
in mathematics might begin with prealgebra and have other states for algebra,
trigonometry, precalculus, and calculus. Although many students may take a linear
path through these subjects, some students might skip a class (e.g., transition from
trigonometry directly to calculus). Thus, each state from our HMM becomes a
node in the finite state machine, and the weight of each arrow between nodes
provides the probability of making the transition from one state to the next.

In order to create the HMM we had to first identify three variables:

● The set of discrete high-level states a student could be in (as defined by the
set of code snapshots belonging to that same state).
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26 BLIKSTEIN ET AL.

● The probability of being in a state given the state that the student was in
previously (called the transition probability).

● The probability of seeing a specific code snapshot given that the student is
in a particular state, called the emission probability. To calculate the emis-
sion probability, we interpreted each of the states as emitting snapshots with
normally distributed similarities.

To predict these variables in the HMM, we used the expectation maximization
algorithm (Dempster, Laird, & Rubin, 1977). To compute the different milestones
of the assignment, we used two clustering algorithms: k-medioid (Kaufman &
Rousseeuw, 1990) and hierarchical agglomerative clustering (Cutting, Karger,
Pedersen, & Tukey, 1992). Once we had established the set of possible states (i.e.,
milestones) for the assignment, we used an expectation maximization algorithm
to simultaneously compute both the transition and emission probabilities in the
state diagram, which resulted in a probabilistic assignment to the state variables
for each student at each point in time as well as estimates for parameters for the
HMM reflecting the state diagram induced.

Finding Patterns in Paths. The final step for our algorithm was to discover
patterns in the students’ transitions through the different states. To find these pat-
terns, we clustered the paths that students took through the HMM using a method
developed by Smyth (1997). For all students, HMMs were constructed to rep-
resent their individual state transitions, incorporating prior probabilities based on
the HMM for the entire class. We measured similarity between two students as the
probability that Student A’s trajectory could be generated by Student B’s HMM
and vice versa. As we explain in the next section, we then clustered all of the
student paths to create groupings of students based on the characteristics of their
paths.

Results

Defining the Clusters for Students’ Pathways. The clustering of a sample
of 2,000 random snapshots from the training set returned a group of well-defined
clusters (see Figure 9). One important step is to define the number of possible
clusters. We based our number on the silhouette score of the clusters’ goodness
of fit. This score indicates the best number of clusters, and the number that maxi-
mized the silhouette score was 26. A visual inspection of these clusters confirmed
that snapshots that clustered together were functionally similar pieces of code and
showed an ample range of the different code snapshots that we had observed.
Our results were analogous when we tried a slightly different number of clusters.
When we repeated this process with a different set of random snapshots, 25 of the
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PROGRAMMING PLURALISM 27

FIGURE 9 Dissimilarity matrix for a clustering of 2,000 snapshots. Each row and column
in the matrix represents a snapshot (snapshots are sorted so that more similar snapshots are
in adjacent rows). The entry at row i, column j, represents the similarity of snapshots i and
j (darker indicates greater similarity). The 26 prototypical states are visible as blocks along
the main diagonal—we highlighted the larger blocks with thick lines around them, and made
them darker. The less visible blocks, in light gray and outside of the main diagonal, represent
snapshots that could not be grouped in any of the 26 states.

27 clusters were identical, indicating that the results were quite stable—the choice
of 26 clusters and the high-level trends were robust.

Sink States. The state machine for the entire class showed that there were
several sink states—milestones where the students had clearly encountered seri-
ous difficulties. We interpret these states as programs with bugs that were very
hard to solve. Once a student entered into such a state, he or she had a high prob-
ability of remaining there for several code updates. The state machine indicated
the probability and which transition most students took to get out of that state. For
example, some students would get their code into a state in which the program
would enter an infinite loop and keep placing checkers only in the first two rows.
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28 BLIKSTEIN ET AL.

Once in this sink state, students tended not to make forward progress for many
cycles of saving or compiling.

Prototypical Patterns and Relationship With Class Midterms. Utilizing
the 26 possible states and the clustering of trajectories, we were able to generate
a graphical description of those trajectories in Figure 10 (the size of the circles is
proportional to the number of code snapshots in a given state). We can observe
clear differences in both the types of states that the two groups visited and the
patterns that characterized the students’ transitions between states. Qualitatively
speaking, the Gamma group can be described as becoming trapped in several sink
states (e.g., L and K) and then making a direct transition from a semi-working
program (state I) to a fully functional program (state E). The Alpha group seemed
to make smaller but steadier incremental steps toward the solution.8

Correlation With Midterm Grades. In addition to finding patterns in
students’ development progress, which can be indicative of a student’s
programming style and knowledge of programming concepts, we also wanted to
determine the predictive power of such algorithms for students’ performance in
exams. Thus, we sought to examine the extent to which students’ development
trajectories on their first assignment could be used to determine their performance
on the midterm exam.

After defining the Alpha, Beta, and Gamma clusters (see Table 6), we found
that the group a student was clustered into was indeed predictive of his or her
midterm grade. The distinction between the Alpha and Gamma groups was partic-
ularly large, having a mean midterm score difference of 7.9% (p < .04, two-tailed
t test).

Results: Comparison With Other Cohorts. In order to understand the
generalizability of such models outside of our sample, we also classified learners
who took the class during the following quarter into the Alpha, Beta, and Gamma
groups using the training set from students from the previous quarter. The Alpha
group (n = 30) had a mean midterm score of 69.7 (SD = 14.1), and the Gamma
group (n = 42) had a lower midterm score of 63.3 (SD = 15.4). This time we found
a trending difference between the mean midterm scores of these groups (p < .08).

This last result shows that the induced models are quite robust: They capture
patterns in development paths that generalize across student development behav-
ior between classes with different instructors and are not specific to a single
class. The generalizability of the induced models has the potential to provide
predictive capability in helping address student difficulties in programming and,

8For space considerations and because the data were more robust and well-defined, we only show
Alpha and Gamma.
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PROGRAMMING PLURALISM 29

State Functionality of the typical snapshot. In this state, the program…
A …is beginning (start state)
B …can place a single beeper
C …can place a perfect row in all worlds
D …can place two perfect rows of the combined solution
E …has the combined solution that works on all worlds
F …has the zigzag solution that works in all worlds except one-column worlds
G …has the zigzag solution that crashes on add column worlds
H …has the zigzag solution that works on all worlds
I …can place one line, misses a beeper on odd-column worlds
J …can do two rows of the zigzag solution; Second row shifted
K …repeats first two rows indefinitely
L …is hardcoded to place first row in the 8 × 8 world

FIGURE 10 Visualization of finite state machines for the Alpha and Gamma clusters of
students. The size of the circles is proportional to the approximate number of code snapshots
in the various states. Note that this is not equivalent to the number of students in each state, as
the same student could have multiple snapshots within any given state.
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30 BLIKSTEIN ET AL.

TABLE 6
Grades of Students in the Alpha, Beta, and Gamma Clusters

Metric Alpha Beta Gamma

Number of students (count) 84 108 46
Midterm score (%) M = 73.3, M = 71.4, M = 65.4,

SD = 20.0 SD = 26.2 SD = 23.2
Time to complete assignment (days) M = 8.2, M = 9.1, M = 9.3,

SD = 2.0 SD = 1.8 SD = 1.9
Karel score (%) M = 91.2, M = 88.6, M = 88.3,

SD = 7.0 SD = 6.9 SD = 7.6

furthermore, to yield deeper insights regarding fundamental misunderstandings of
programming that transcend the details of one particular class.

OVERALL DISCUSSION

We began this article by emphasizing that the fields of learning analytics and edu-
cational data mining need to extend their methodologies to detect patterns in data
sets originating from unscripted, open-ended tasks, as they relate to skills and abil-
ities that are gaining importance in a variety of educational settings. This requires
the development of research and tools to permit (a) the use of high-frequency data,
(b) multimodal capture of the entire process of generating artifacts, (c) the use of
machine-learning techniques to uncover latent trajectories and patterns, and (d)
predictions concerning student performance as measured by traditional metrics
such as grades. As an initial step within this agenda, in this article our goal was to
investigate new methodologies for examining students’ behaviors as they generate
open-ended computer programs.

Tackling computer science as an initial content area makes sense method-
ologically for reasons that we have explained before (e.g., detailed data capture
is possible). It also makes sense considering the problematic track record of
computer science education in the United States (McCracken et al., 2001) and
elsewhere (Lister et al., 2004), and the lack of conclusive research on the factors
that lead to success in introductory programming courses (Dehnadi, 2009).

One path to determining these factors has been to create taxonomies of pro-
gramming styles or styles in the learning of programming (Bruce et al., 2004;
Perkins et al., 1986; Turkle & Papert, 1992). This approach seemed promising
because it would allow for multiple paths into programming expertise and for
several different strategies for instruction, but most taxonomies have been based
either on qualitative observations or on small studies (n ∼ 10). Moreover, little
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PROGRAMMING PLURALISM 31

research has followed up on these early efforts: Even though these categories
seemed to make sense in the context of the studies, they tended to be too binary
and absolute (tinkerers vs. planners), whereas in reality there are likely many
more shades of gray and hybrid, dynamic forms of learning programming. But
these possibly more detailed taxonomies of programming styles would be diffi-
cult to determine using traditional methods and small sample sizes. Our work is
an empirical contribution toward this agenda because it expands the available anal-
ysis tools and methods and consequently increases the tractable size by orders of
magnitude.

In our initial experiments, we looked at the evolution of programming behav-
iors across several assignments, asking whether relatively simpler quantitative
measures could capture differences in these behaviors and whether these differ-
ences would be related to course performance. The main measure we used was the
code update differential, which measured how much code was changed in between
two snapshots. We assumed that the size of those updates (large or small) could be
related to performance in the course. However, the first two experiments showed
that although we were able to induce clearly distinct clusters (suggesting that
there are indeed different programming styles), these clusters were very weakly
related to performance. This is a somewhat surprising finding because a com-
mon assumption among computer science educators is that disciplined planning
is one of the main ingredients of success in programming (two of the coauthors
have been teaching these courses for several years). We found that students with
very different code update patterns achieved similar grades in the course, even if
there was a small (but not significant) advantage for students doing large updates.
We are aware that the code update size might not be a perfect approximation
of tinkering and planning, but the fact that even after successive data analysis
attempts we could not find a significant correlation with course performance sug-
gests that these two behaviors might be much less determinant for performance
than computer science educators currently consider.

In Experiment 3, we hypothesized that the amount of change in students’
patterns would be more determinant than update size and tinkering/planning
behaviors. This approach was built on the assumption that students’ update pat-
terns would change because of good course performance, as (a) most students
were novices, and thus unfamiliar with disciplined programming; and (b) one
of the main learning goals was to teach programming methodology. We exam-
ined how the change in programming patterns related to formal measures such
as exams and assignment grades, and we found evidence for a correlation with
students’ grades on assignments and, to a lesser extent, their exam grades as
well. This result could indicate that a simple quantitative measure (the amount
of change in code update pattern) could be significantly correlated with course
performance even if we do not look at the content of the programs. This provides
evidence that some of our simple measures are detecting latent patterns in how
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32 BLIKSTEIN ET AL.

students learn to program. However, without more sophisticated techniques, it is
very difficult for learning analytics researchers to make sense of these patterns,
especially with data as unstructured as computer programs.

This was exactly our attempt in Study 2, in which we investigated a single
assignment in considerable depth. We examined in detail students’ trajectories
and generated a state machine with 26 typical states for the Karel assignment.
The robustness of the 26 states, as confirmed through both automated and manual
analysis, suggests that even for open-ended tasks, there are prototypical states for
students to traverse, and some states are more productive than others. The impli-
cation of this particular finding, which is novel in the literature, may be significant.
We have demonstrated that even in a completely unscripted task, and for students
of diverse backgrounds and course performance, there are states and trajectories
that capture the great majority of their work. This finding could lead to the devel-
opment of entirely new forms of formative and summative assessments, in which
the work of the students themselves is used to generate state machines, based on
realistic, ecologically valid tasks and customized for individual classrooms or stu-
dent subgroups. The findings also point to the possibility of designing systems
that find, in real-time, the best opportunities to offer help to struggling students in
open-ended tasks, as revealed by students’ trajectories.

We have also shown that there are sink states. By studying the most common
transitions into such sink states, and the most successful transitions out of them,
we could advise instructors on how best to help students before or after they find
themselves in such states—even in real time. Ultimately, we could consider the
possibility of instrumenting a software development environment to recognize
such states autonomously and provide in situ guidance to students. Also, for learn-
ers, the awareness of being in a sink state could trigger productive metacognitive
processes that will facilitate their return to a productive trajectory. Note that this
approach is different from what is commonly called personalized learning, which
makes predictions based on multiple-choice tests, scripted tasks, or a priori models
of the learner. In our case, the model is induced from the work the students them-
selves generate while performing real tasks. Even though we are here just taking
small steps toward that goal, it could constitute a promising research agenda for
the field of learning analytics.

In Study 2, we also found a higher correlation between students’ program
development trajectories and their midterm scores than between their final and
midterm scores. The underlying rationale is that a much larger diversity of paths
exists than the final program outcomes would suggest, and thus the development
path provides important information that is not available from the final product,
and consequently it better predicts students’ performance.

The success of the model also implies more subtle insights. The construc-
tion of the Karel state machine relied on two substantial assumptions: (a) that
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PROGRAMMING PLURALISM 33

a dynamic time-warped save/compile event reflected a unit of work9; and (b)
that in the generation of state transitions, the future is independent of the past
given the present (the Markov assumption). The validation of the save/compile
event as a unit of work is methodologically crucial, as other methods of data col-
lection would be extremely more complex and computationally expensive (e.g.,
capture at regular intervals, or continuous capture). In addition, we had enter-
tained the idea that the HMM would not be a good approach because it might
miss the effect of memory, in that students might remember several of their previ-
ous states when building a subsequent step in their programs. However, the results
suggest that, at least for an introductory assignment with limited complexity, the
HMM assumption was correct. Building the assignment state machine based on
these assumptions does not prove the assumptions are always correct, but it does
demonstrate a tractable scheme for model construction that is sufficiently fine-
grained to capture important trends while avoiding excess degrees of freedom in
the model and overfitting the training data.

Limitations and a Cautionary Note on Learning Analytics and Big Data in
Education

We are aware that our work has several caveats. First, code was captured only
for save/compile events, which was sufficient but might not have been the most
accurate measure for a unit of work. Second, our current technology does not give
any information about what happens when students are off task, or even how to
distinguish their on-task and off-task time. An additional limitation of the work
is that it required human labeling for a subset of the data for the determination of
similarity between snapshots (in Study 2), which was laborious. Another technical
aspect that could be problematic is that our methods were sensitive to intermediate
steps in the data analysis workflow. For example, choices in how to normalize,
time warp, and cluster the data could have altered the results greatly.

These limitations point to some important caveats about the endeavor of using
big data in education itself. There is a popular assumption that huge data sets can
reveal undisputable truths: the more data, the more discoveries. This obscures the
fact that signal and noise do not scale in the same way and that there is a difference
between increasing the number of observations of a given data set (the “rows”) and
what parameters one is capturing in the data set (the “columns”). Current research
methods in education, although limited, carry a very strong signal because the
data collection is highly focused, in either qualitative or quantitative studies.
Researchers spend vast amounts of time designing tests, interview protocols, and

9This means that our approximation of using a save/compile event as a marker for when students
conclude a unit of work was correct.
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34 BLIKSTEIN ET AL.

focused tasks, resulting in dense data. Researchers are very explicit and inten-
tional about the variables and parameters that the data set will contain, even if the
number of observations is relatively small. As we start collecting much larger
amounts of data from clickstreams, server logs, and other automated sources,
the choice of what to capture is much more driven by the capturing technology
(because it has to be massive), and the amount of noise grows exponentially. Thus,
big data in education will only be as useful as our capacity to distinguish signal
from noise, which depends on exhaustive and complex human intervention and
on research on new ways to collect more meaningful, richer data. Big data do
not equal big signal, so extreme care must be taken in designing data workflows
to ensure a good signal-to-noise ratio, manageable dimensionality of the space,
maintenance of computational tractability, and avoidance of false discovery. This
oftentimes entails more—and not less—work from researchers, despite that fact
that computers are doing the computational heavy lifting.

CONCLUSION

We structured this article as a series of several experiments and studies of increas-
ing complexity. This methodological rationale was to first tackle the low-hanging
fruit methods for our type of data set and then move on to more sophisticated
measures as needed. We believe that this approach is useful because the compu-
tational cost of different machine-learning techniques, as well as their technical
complexity, can be a few orders of magnitude apart. In fact, although our first
experiment took a few minutes of computation time, the number crunching in
Study 2 took several days of nonstop high-performance computing power. For
the learning sciences community, being able to utilize simpler tools would make
learning analytics more popular and accessible. Because of this approach, and the
fact that the field is in its infancy, we decided to report some results that were not
significant.

In that regard, at least for our type of data set, our results show that the sim-
pler clustering and similarity-finding techniques can reveal some types of general
patterns, but they do not afford great insight into the findings. The deeper insights
came from the more complex methods from Study 2. The use of open-ended, noisy
data such as code snapshots has proven to be challenging, but along the way we
have learned and reported a host of methodological insights and useful techniques.

The results from the two initial experiments point to the fact that the size of
code updates is surprisingly not associated with course performance. However,
they point to the fact that changes in the code update pattern are more correlated
with grades. Our results are just one first step in the direction of detecting this
type of change, but such a technique could be a valuable and computationally
inexpensive detector of student progress, for either instructors or students.
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PROGRAMMING PLURALISM 35

Our second study showed that a robust state machine can be built from
seemingly unrelated individual trajectories and that the states and trajectories
of individual students are surprisingly universal. We found that unproductive
sink states can be reliably identified and that certain types of trajectories, nor-
mally involving fewer sink states, are correlated with better student performance
on exams. Study 2 also shows the generality of the patterns found in student
programming paths. We analyzed the programming paths of students from two
different quarters, taught by different instructors, yet we observed similar patterns
in their paths in both courses. This generality indicates that such models may be
more broadly applicable as a means of designing interventions that would bet-
ter assist programmers, especially novices. With the necessary adaptations, this
approach could be extended to other types of tasks using multimodal learning
analytics (Blikstein, 2013; Worsley & Blikstein, 2013), such as the construction
of robots and physical computing devices, media creation, and interaction with
exploratory computer-based environments, possibly making the everyday, rigor-
ous, large-scale use of those learning tasks much more feasible and prevalent in
classrooms.

In closing, we have shown that by examining the process of programming
rather the final product, using high-frequency data collection and machine-
learning techniques, we were able to uncover counterintuitive data about students’
behavior when learning to program, and we demonstrated that even in an
open-ended task, patterns with better predictive power than exams can be found.

We intended this work to testify to the possibility of assessing highly person-
alized artifacts without diminishing the fact that they are personal. Our goal is
not to use machine learning to further standardize instruction (e.g., building auto-
graders for computer science) but to make possible more project-based work in
computer science classrooms. Our two studies, in fact, show that success in com-
puter programming is a tale of many possible pathways. Although monolithic
formulas for (massive or not) teaching and learning programming are likely to
fail, an approach that takes into consideration multiple starting points and mul-
tiple methods for achieving proficiency may stand a better chance. Learning to
program is personal. Just as there will always be multiple solutions to a computer
science problem, there should be multiple solutions to building expertise in pro-
gramming, embracing diversity rather than negating it. Thus, the best approach to
computer science education, echoing calls for epistemological pluralism (Turkle
& Papert, 1992), is to be open to programming pluralism.
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