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ABSTRACT 

In this paper, we describe multimodal learning analytics 

techniques for understanding and identifying expertise as students 

engage in a hands-on building activity. Our techniques leverage 

process-oriented data, and demonstrate how this temporal data can 

be used to study student learning. The proposed techniques 

introduce useful insights in how to segment and analyze gesture- 

and action-based generally, and may also be useful for other 

sources of process rich data. Using this approach we uncover new 

ideas about how experts engage in building activities. Finally, a 

primary objective of this work is to motivate additional research 

and development in the area of authentic, automated, process-

oriented assessments.  

Categories and Subject Descriptors 

General Terms 

Algorithms, Human Factors. 

Keywords 

Keywords are your own designated keywords. 

1. INTRODUCTION 
As much as we might like to think otherwise, assessment remains 

a critical component of the educational system. Whether students 

are engaged in a formal classroom lesson, or participating in play-

based learning, there is the expectation that one can identify a 

measurable outcome concerning how the student thinks, acts or 

feels. Systematically demonstrating such learning outcomes in 

project-based learning environment has long been a challenge 

faced by education researchers [1, 2]. Early education researchers 

[3, 4] recognized the merits of project-based learning, but 

widespread adoption of the practice has largely been hampered by 

this need to demonstrate its effectiveness at scale. The observed 

challenge manifests itself in researchers having to choose between 

traditional assessments that scale, but may be fundamentally 

inconsistent with the process-oriented goals of project based 

learning; and finding creative ways to use student portfolios, 

micro-genetic analysis and ethnographies, all of which are unable 

to scale to larger populations. Fortunately, we are arriving at a 

time when the technological tools that are available through 

machine learning and artificial intelligence can help make 

process-oriented analyses for project-based learning, more 

scalable.  

Beyond the goal of moving away from traditional assessments, 

that tend to neglect learning processes, we are also concerned 

about how some traditional assessments are divorced from the 

actual practices of the discipline in which they are administered. 

This is particularly the case within many engineering disciplines. 

In computer science, for example, it is not uncommon to have 

students write pseudo code on an exam as a method for assessing 

their programming proficiency, despite the fact that when writing 

pseudo code, the student is restricted from utilizing the various 

tools that may be used when actually programming. Similarly, 

mechanical engineering students may be asked to derive an 

equation or prove a theory on an exam, but seldom engage in 

activities that are directly akin to the practices of the field. In 

order to fill this gap, our current work looks to advance our ability 

to understand and utilize forms of assessment that are more 

closely tied to the practices of their respective disciplines. More 

specifically, we study patterns in how students of different levels 

of expertise go about completing the design and construction of 

simple machines and structures. 

At a high-level, this paper intends to: 

- Present techniques for doing automated multimodal analysis 

of student expertise while they engage in building tasks, 
- Justify the pedagogical merit of our techniques 
- Discuss the implications that these techniques have on the 

future of assessments, and on our understanding of how 

expertise is manifested through building. 

- Motivate more widespread development and adoption of 

process-oriented assessments through the use of multimodal 

learning analytics. 

2. THEORETICAL FRAMEWORK 

2.1 Constructivism/Constructionism 
This work fundamentally builds on Piaget’s notion that 

knowledge is actively and dynamically constructed by the learner 

based on resources that she already has, and Papert’s 

constructionism [5]. The study takes place within a constructionist 

learning environment and involves students participating in the 

physical construction of artifacts. These construction activities 

give students the opportunity to develop their ideas by completing 

several cycles of building and debugging.  Furthermore, students 

have an opportunity to explore engineering design in an authentic 

way that is challenging and engaging. 
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2.2 Knowledge in Pieces 
This work also builds the knowledge in pieces (KiP) framework 

[6] which considers how students make sense of fundamental 

concepts in science by dynamically articulating and reorganizing 

atomistic intuitions about the physical world, rather than making 

use of robust theoretical systems. Moreover, KiP speaks to the 

transition from being a novice to being an expert in a given field 

by reorganizing rather than replacing ideas. According to diSessa 

[6] experts share many of the same intuitions as novices, but have 

the additional ability to know when those intuitions apply, how 

they are connected, and when one must employ other concepts in 

order to fully understand a scientific phenomenon. While diSessa 

is primarily concerned with spoken descriptions of phenomena in 

physics, we hypothesize that similar types of dynamic re-

articulation of intuitions could be at play when students engage in 

simple engineering building activities. 

We also borrow from KiP theorists their focus on microgenetic 

analysis [7] in that we look at student actions over small 

timescales in order to interpret the mental constructs governing 

their thinking and actions. 

2.3 Multimodal Learning Analytics 
Finally, the approach described, follows in a growing body of 

literature concerned with developing learning analytics [10, 11]). 

Here we specifically look at approaches that are multimodal in 

nature, as we posit that identifying student learning likely requires 

the ability to analyze and synthesize a variety of data streams. 

Much of the previous work in this area of research has looked at 

speech, gaze, sentiment and drawings as primary elements of 

analysis [12, 13, 14]. Here we depart from those and study the 

interaction of actions and gestures.  

3. METHODS 

3.1 Data 
Data is drawn from thirteen participants. Each participant is given 

everyday materials, and asked to build a tower that could hold a 

mass of approximately 3 lbs. Participants were also challenged to 

make the structure as tall as possible. Figures 1 and 2 depict 

structures created by two different participants. 

 

Figure 1 - Sample Expert Structure 

 

Figure 2 - Sample Novice Structure 

The task was designed to successfully students are able to take 

their intuitions about mechanical engineering and physics and 

translate them into a stable, well-engineered structure.  As such, 

we expected students to use knowledge about forces, symmetry, 

and the affordances of different geometric objects, to enable them 

to complete the task. The additional challenge of making the 

structure as tall as possible was introduced to push all students, 

regardless of expertise, to the limits of their ability. 

An additional design consideration for this task was the existence 

of explicit metrics for measuring the success of their work. These 

metrics include whether the structure could hold the mass, how 

tall the structure is and how long the structure is able to hold the 3 

lbs. mass. 

In terms of the actual building task, students were given four 

drinking straws, five wooden popsicle sticks, a roll of masking 

tape and a paper plate; and were told They were told that they 

would receive approximately ten minutes to complete the activity. 

However, they were permitted to work for as long as they wanted, 

with participation time ranging from eight minutes to fifty-two 

minutes.  

 

Figure 3 – The Data Capture Environment 

Figure 3 depicts the capture environment used to record the audio, 

video and gesture data streams. Audio was used to capture 

meaningful utterances made by the participants, though students 

were not required to engage in a think-aloud. Audio was also 

captured of each student’s metacognitive analysis of their building 

approach. Video captured the movement of objects as students 

progressed through the task, while gesture data, which consisted 

of twelve upper-body parts, recorded the students’ physical 

actions. 

3.1.1 Defining Expertise 
Prior to the study students were classified based on their 

perceived level of expertise in the domain of engineering design. 

Expertise was primarily based on participants’ previous 

experience with engineering design. Such experiences could be in 

either a formal or informal context. More specifically 

classification was made along two main dimensions. The first 

dimension pertains to the amount of formal instruction students 

had received in engineering. Individuals who had completed 

bachelors or graduate degrees in engineering were labeled as 

experts. The second dimension for determining expertise in 

Overhead camera for object tracking 

Skeletal overlay of gesture capture Building materials 



engineering was based on observations that the researchers made 

while watching the students over the course of more than two-

hundred hours in an engineering and digital fabrication class. As a 

part of these two-hundred hours of observation, the researchers 

also had the chance to learn about the ways that participants 

engaged in engineering activities in extra-curricular activities and 

at home. 

This definition of expertise resulted in population of three experts 

(graduate students in mechanical engineering), two high expertise 

students, five medium expertise students, and three low expertise 

students. 

3.2 Coding 
In order to establish a basis for comparing across the thirteen 

students, we created a coding scheme. This coding scheme 

consists of eleven object manipulation codes. This set of codes 

was identified through open coding of a sample of the videos, and 

agreed upon by a team of research assistants. The codes are 

entirely based on participant object manipulation, or lack thereof, 

and are not an attempt to explicitly interpret a student’s intentions. 

Nonetheless, we would argue that in most cases, the codes are 

necessarily tied to user intent, since they are strictly action 

oriented. 

 

Table 1- Fine-Grain Object Manipulation Codes 

Code Description 

Building 
Joining things together by tape or other 

means that is relatively permanent.  

Prototyping 

Mechanism 

 Seeing if putting two (or more) things 

together will work well. This could also 

include acting out a mechanism with the 

materials. 

Testing 

Mechanism 

Involves testing of a subsection of the 

overall system. 

Undoing 
Taking things apart as to make a change to a 

previous build. 

Single Object 

Examination 

Pressing or bending on an object to explore 

its properties 

Thinking 

without an 

object in hand 

Simply surveying the pieces, but not 

touching anything, or actively doing 

anything. 

Thinking with 

an object in 

hand 

Not building, or testing the objects 

properties explicitly, but still holding the 

object. 

System Testing 

Putting force on a collection of relatively 

permanently affixed pieces to see if they 

will hold the mass 

Organizing 
Repositioning the raw materials but not 

actually building, examining or prototyping. 

Breaking 
Breaking apart sticks, bending straws, or 

ripping tape (in an usual way)  

Adjusting 

Often times involves moving something to 

slightly reposition it, or applying more tape 

to make something stay better. 

 

Using the above codes we were able to condense the students’ 

actions into comparable sequences of time-stamped codes. These 

codes will serve as a primary data source for the analysis 

described in the following section.  

3.3 Object Manipulation Data Analysis 

3.3.1 Sequence Construction 
We begin the automated portion of the analysis with the time-

stamped action logs for each student. We first compress similar 

action codes. More specifically, we compress the codes to the 

following five classes:   

Table 2 - General Object Manipulation Action Classes 

 

With these more general classes of behaviors, we construct a 

sequence of user actions that are based on half-second increments. 

Thus, for each user we will have an ordered list of actions, as 

observed every half a second.  

3.3.2 Sequence Segmentation 
 Each sequence of actions is then segmented any time a 

TEST action occurs. Our assumption is that we need to have a 

logical way for grouping sequences of user actions and each time 

a user completes a TEST action, they are essentially signaling that 

they expect for their previous set of actions to produce a particular 

outcome. Each segments is recorded, based on the proportion of 

each of the five action classes (BUILD, PLAN, TEST, ADJUST, 

UNDO) that took place during that segment. Put differently, we 

now have a five dimensional feature vector for each segment, 

where each dimension corresponds to one of the action classes. As 

an example, consider the following set of codes: 

PLAN, PLAN, BUILD, TEST, ADJUST, UNDO, BUILD, TEST 

This sequence of 8 codes would be partitioned into four segments. 

The first segment would be PLAN, PLAN, BUILD; the second 

would be TEST; the third would be ADJUST, UNDO, BUILD; 

and the fourth would be TEST. These four segments would then 

be used to construct four feature vectors based on the proportion 

of each of the action classes. Accordingly, we would have the 

following: 

Table 3 - Sample Segmented Feature Set 

Segment ADJUST BUILD PLAN TEST UNDO 

1 0.00 0.33 0.67 0.00 0.00 

2 0.00 0.00 0.00 1.00 0.00 

3 0.33 0.33 0.00 0.00 0.33 

4 0.00 0.00 0.00 1.00 0.00 

 

Class Codes 

BUILD Building and Breaking 

PLAN 

Prototyping mechanism, Thinking with or without 

an object, Single object examination, Organizing 

and Selecting materials 

TEST Testing a mechanism and System testing 

ADJUST Adjusting 

UNDO Undoing 



3.3.3 Segment Standardization 
 Each column of the feature set is then standardized to 

have unit variance and zero mean. This step is taken in order to 

ensure that there are no biases when we perform clustering in the 

next step. 

3.3.4 Segment Clustering 
 Following standardization the segments are clustered 

into ten clusters using k-means. Each segment is now associated 

with one of ten clusters. Each participant’s action sequence is 

reconstructed to reflect one of the ten clusters for each segment, 

recalling that the action sequence is segmented based on TEST. 

3.3.5 Dynamic Time Warping 
 Finally, dynamic time warping [15] is used to compute 

the minimum distance between each pair of participants. The 

distance between two clusters is determined by the cluster 

centroids from k-means, and is based on Cosine distance. This 

computation yields an n-by-n matrix of minimum distances, where 

each distance is normalized by the length of the vectors being 

compared. 

3.3.6 Distance Clustering 
 The n-by-n matrix from the dynamic time warping 

calculation is standardized along each column, before being used 

to construct the final clustering, again with k-means. In order to 

compare the clusters to expertise classifications, we find the 

cluster to expertise alignment that minimizes the total error. 

In summary, this algorithm converts an action sequence into 

segments based on when a subject tests their structure or tests a 

mechanism. The proportions of actions in the different segments 

are used to find representative clusters, which are used to re-label 

each users sequence of segments. Finally, we compare sequences 

across participants and perform clustering on the pair-wise 

distances in order to find a natural grouping of the participants. 

3.4 Gesture Data Analysis 
The gesture data analysis, while similar in spirit to the object 

manipulation analysis, involves markedly less complexity. This is 

partially due to the particularly fine-grained nature of the data, 

which was captured every millisecond. Capturing millions and 

sometimes billions of data points for each user and attempting to 

use these for doing sequence alignment is a computationally 

expensive task, which we may endeavor to explore further in later 

work. Instead, for this analysis we take a simpler approach. This 

approach is motivated by an observed difference between the 

amounts of two-handed, coordinated, movement among 

individuals of differing expertise. Here we consider two-handed 

coordinated movement to be when a participant is using both of 

their hands within a given action. Figures 4 and 5, which graph 

the cumulative displacements for the right and left hand, depict 

this difference. The expert's hands typically move in sync with 

one another, whereas the novice's hand movements are markedly 

asynchronous. We look to exploit this difference in constructing 

our algorithm. 

 

Figure 4 - Novice Cumulative Hand Movements 

 

 

Figure 5 – Expert Cumulative Hand Movements 

 

Given the gesture data from each individual's hands, we begin by 

constructing a vector based on the absolute difference in the 

cumulative displacement of their two hands. We then sample each 

of those distributions at five percent increments, such that all 

participants will have feature vectors of equal length. These 

feature vectors are then used to compute the pairwise Euclidean 

distance between every set of two participants. Those distances 

are standardized by column, and used as the input for Hierarchical 

Agglomerative Clustering, with four clusters. We tried using K-

means clustering also, but found that most students were being 

assigned to the same clusters. In future work we will more closely 

examine why Hierarchical Agglomerative clustering was most 

successful for this analysis. Finally, the clusters are aligned to the 

levels of expertise as to minimize the total error. 

4. RESULTS 
This study focuses on the nature and frequency of building 

patterns that we observed among the students, through process-

oriented data analysis techniques. In order to motivate the utility 

of our approach, we begin by taking a static, non-process-

oriented, view of the students' actions. Here we take non-process-

oriented to mean that instead of looking at the entire sequence as 

an ordered set of data points, we will only look at the data in 

aggregate. 

4.1 Non-Process Oriented Analysis 
 



 

Figure 6 - Proportion of Object Manipulation Classes by 

Expertise 

 

Figure 6 presents the proportion of time that each student spent on 

the five general action classes. From the graph it is quite unclear 

as to how one would go about accurately predicting expertise 

based solely on these overall proportions. More specifically, there 

does not seem to be a linear relationship between any of the five 

general classes and expertise. Instead we see that in some cases, as 

in the case of time spent in PLAN, experts are most similar to 

novices. However, in other cases, as in the case of ADJUST 

(Figure 6), experts and people of medium expertise are the most 

similar. This is merely one example of a non-linear progression. 

Nonetheless, we can take these values and learn models that are 

aligned with expertise. Figure 7 presents the results from a logistic 

regression model, with 10-fold cross validation, as well as k-

means clustering. As a point of comparison, two baseline 

measures are also reflected in Figure 7. Similar analyses were also 

completed using other machine learning algorithms: Decision 

Trees, Neural Networks and Bayesian Networks, but all with 

similar results. Furthermore, we are cautious about using 

supervised learning with such a small dataset, because the 

algorithms are likely to over fit to the data. 

 

  

Figure 7 – Classifier Accuracy Based on Proportion of Object 

Manipulation Classes by Expertise 

 

Another non-process-oriented metric for comparison could be the 

time spent to complete the task and the overall success of a given 

build. Table 4 shows the amount of time each student took to 

complete the task, as well as a binary scoring concerning the 

success of their structure. 

Table 4 - Elapsed time and success for each participant 

Subject Expertise Time(s) Success 

1 Medium 1387 Yes 

2 High 909 Yes 

3 Medium 491 Yes 

4 Low 1550 No 

5 Low 3077 No 

6 Medium 1265 Yes 

7 Medium 1366 Yes 

8 Medium 1373 Yes 

9 Low 1730 No 

9 Medium 2363 No 

10 High 713 Yes 

11 Expert 834 Yes 

12 Expert 1100 Yes 

13 Expert 1122 No 

  

While previous literature would suggest that experts take less time 

to complete tasks [16] this is only partially true for our population 

and task. Using these values to differentiate between different 

levels of expertise worked better than the action code proportions, 

(see Figure 8). Nonetheless elapsed time and success represent 

very unsatisfying features. They are unsatisfying because the 

nature of the problem is not one that would easily align with this 

paradigm. For example, because of the challenge to make the 

structure as tall as possible, experts may find themselves spending 

more time than novices in an effort to perfect their design. This 

would distort the expected time trend. At the same time, it could 

also distort our expectations around success, since an expert may 

take a functioning structure and render it unsuccessful in an effort 

to make it taller.  

 

 

Figure 8 - Classifier Accuracy Based on Elapsed Time and 

Success 

Taken as a whole, these non-process oriented analyses fail to 

account for the temporality of the data, and the important ways 

that the temporality of actions is associated with user expertise. At 

the same time, simply using time and success takes a very naïve 

view of expertise and begs for an algorithm that can more closely 

capture the nuances of expertise. 



4.2 Object Manipulation Results 
In contrast to the non-process-oriented approach, our object 

manipulation analysis algorithm is able to significantly 

outperform both random assignment and majority class 

assignment, all while preserving the process-oriented nature of the 

task. Figure 9 highlights the accuracy attained through our object 

manipulation analysis, and the other techniques, keeping in mind 

that our approach has been completely unsupervised. 

 

Figure 9 – Classifier Accuracy Based on Object Manipulation 

Algorithm as Compared to Other Techniques 

 

Similarly, the confusion matrix derived from our work is seen in 

Table 5. 

Table 5 - Confusion Matrix of Expertise 

 

Low Medium High Expert 

Low 3 0 0 0 

Medium 3 1 1 0 

High 0 0 2 0 

Expert 0 0 0 3 

 

From the confusion matrix we see that the algorithm worked best 

at uniquely clustering expert behavior which it did at an accuracy 

of 1. It also attained recall of 1 for individuals of low expertise. 

However, for those individuals of intermediate levels of expertise, 

the algorithm was less accurate, but was still able to do a 

reasonable job, considering that our metric of expertise may be 

noisy for participants of medium expertise. 

Of additional interest is the cluster centroids for the segments, as 

these elucidate what each cluster segment represents. Figure 10 

highlights these differences along the dimensions of the five 

general object manipulation action classes (the cluster centroids 

that we discuss here do not correspond to clustered students, but 

the clusters of different segments.) Showing the clusters centroids 

for the students would only show how different each cluster is 

from the other clusters based on average dynamic time warp 

distance. 

 

 

Figure 10 – Cluster Centroids from K-means Clustering 

 

4.2.1 TEST Cluster 
Cluster 1 represents our TEST action, and was used for 

segmenting the sequence of actions. Accordingly, we expect for 

this to be small in magnitude, and for all of the other clusters to 

include below average TEST action proportions.  

4.2.2 UNDO Clusters 
Beyond this, one immediate observation is the amount of UNDO 

actions. For clusters 2, 4, 6, 9 and 10, undoing represents the 

primary component of that segment. This, on the whole, suggests 

that undoing is an important behavior to pay attention to when 

studying expertise. However, simply looking at UNDO by itself is 

not sufficient. Instead, one needs to observe what other actions are 

taking place in the context of the UNDO action. In the case of 

cluster 2, the user is performing significant UNDO actions in the 

absence of any other action. This is in contrast to cluster 4, for 

example, where the user is completing a large number of UNDO 

actions, but is also doing several BUILD actions. From this 

perspective, cluster 2 seems to correspond to doing a sustained 

UNDO, without any building. An example of this would be a 

student completely deconstructing their structure. Cluster 4, on 

the other hand, is more akin to undoing a few elements of one’s 

structure with the intent of immediately modifying the structure. 

These may be more microscopic UNDO actions, whereas cluster 2 

consists of more macroscopic UNDO actions. Clusters 6 and 9 

appear to be characterized by a combination of UNDO actions 

and ADJUST actions. So in this case, the user is undoing, not to 

make large structural changes to their design, but to make small 

adjustments. Cluster 6 differs from cluster 9, however, in that 

cluster 6 also contains both BUILD and ADJUST elements, as 

well as more PLAN actions. 

4.2.3 PLAN, BUILD, ADJUST Clusters 
The remaining clusters, 3, 5 and 7, involve few UNDO actions, 

but can be characterized as different combinations of PLAN, 

BUILD and ADJUST. Cluster 3 almost exclusively consists of 

PLAN actions, whereas clusters 5 and 7 primarily include BUILD 

and PLAN actions. 

In summary we see that six of the cluster centroids play a large 

emphasis on UNDO actions, and the context that they appear in 

while the remaining four are aligned with different proportions of 

TEST, PLAN, BUILD and ADJUST actions. 

 



4.3 Gesture Analysis Results 
The gesture analysis also yielded promising results. Recall that 

here we used the difference between the cumulative displacement 

of the right hand and the cumulative displacement of the left hand.  

 

Table 6 - Confusion Matrix from Gesture Analysis 

 

Low Medium High Expert 

Low 1 2 0 0 

Medium 1 2 1 1 

High 0 1 0 1 

Expert 0 0 1 2 

 

From the confusion matrix in Table 6 we see that the gesture 

channel appears to be less conclusive than the action code 

modality. And, in fact, this is expected given the fact that we were 

unable to take as fine-grained of an approach to this analysis. The 

results are also reflective of only looking at a single set of gesture 

data points, namely the hands. That said, when we relax our levels 

of expertise to simply be binary, we see that the algorithm 

performs significantly better (see Table 7) 

 

Table 7 - Confusion Matrix from Binary Expertise Gesture 

Analysis 

Expertise Low-Medium High-Expert 

Low-Medium 6 2 

High-Expert 1 4 

 

Again, this resulted in an accuracy of .77, surpasses accuracy from 

single class assignment, .62. Thus, while it is apparent that this 

model does not perfectly segment the data, is does correlate with 

previous findings concerning two-handed inter-hemispheric 

interaction [17]. More specifically, previous work on the brain has 

identified that two-handed interaction is crucial for successful 

problem solving. By using two hands, individuals can 

simultaneously engage the right and left hemispheres of the brain. 

Doing so permits them to create new ideas, which are mediated by 

the right hemisphere, and logically choose which of those ideas to 

utilize, which is mediated by the left hemisphere. These results 

can therefore be interpreted to suggest that more expert 

individuals are able to engage both of the processes needed to 

successfully solve the problem: idea generation and logical 

selection of the appropriate idea. Furthermore, this ability to 

select the most applicable idea is analogous to the reprioritization 

and appropriate use of intuitions that diSessa [6] observed in his 

expert-novice comparisons. Thus it may not be that the novices 

are unable to develop the same ideas, it may instead be that they 

are less capable of identifying which of their structural building 

ideas to use, and when each one should be used. As we will 

describe later, future research will help us explore this theory in 

more detail. 

5. DISCUSSION 

5.1 Pedagogical Considerations 
From a pedagogical perspective, we would like to begin this 

discussion by first taking a moment to acknowledge the non-

traditional, yet well-received nature of this form of assessment on 

the part of the students. Many of the students that we work with 

have difficulty fully engaging with STEM content. The students 

often times require frequent encouragement from their instructors 

in order to successfully complete their assignments, and, if left 

alone, will quickly deviate from their assigned task. However, for 

a number of these students, the construction of the simple tower 

as a form of assessment, not only increased their engagement, but 

caused some to ask for additional opportunities to demonstrate 

their knowledge through building. This is largely because the 

activity didn’t feel like a test, but, instead, was a fun engineering 

challenge. In particular, one student, who typically was shy and 

apprehensive about attempting to tackle STEM assignments, 

experienced a significant boost in confidence from participating in 

the building task. This is merely to suggest that at least for the 

population of students that tend to struggle within traditional 

STEM classrooms, making available to them novel forms of 

assessment that allow them to demonstrate their knowledge 

through other means represents a promising opportunity. 

5.2 Object Manipulation Analysis Discussion 
Moving now to the results of the object manipulation analysis, we 

see three primary contributions. On the whole, we have presented 

an algorithm that can effectively be used to group students based 

on the actions that they take while participating in the building of 

simple machines and structures. A key component of this 

algorithm is the identification of the appropriate unit of analysis. 

We showed that looking at the proportion of different actions 

across the entire building task fails to generate meaningful 

comparisons. Instead one should use an approach that captures the 

temporality of the data. We also explored the use to constant time 

based segmentation - segmenting every 10 seconds, for example - 

and normalized time based segmentation - segmenting every five 

percent of someone’s codes - however, neither of these 

approaches were met with success. Instead, segmentation should 

take place based on mechanism testing and system testing, as it’s 

these actions that appear to accurately represent a unit of work. 

Another key insight has to do with the nature of collapsing the 

original eleven codes. Collapsing codes has important cognitive 

and computational implications. Given that we would like to 

enable automatic labeling of the different actions taken by a 

participant, code collapsing makes this increasingly feasible. 

Instead of having to identify very fine grained, hard to detect 

differences between building and breaking, for example, the 

action classification algorithm will only need to be trained on five 

classes of actions. From a cognitive perspective, these findings 

may suggest that while an observer may see the activities in each 

state, prototyping a mechanism or examining an object, for 

example, as distinct activities, sets of activities may actually serve 

the same cognitive role within the participant. This is to say that 

prototyping a mechanism may be cognitively the same as 

examining an object – and we can say they are the same because it 

appears as though individuals of the same level of expertise use 

them in similar ways, as they plan their design.  Nonetheless, 

further analysis is required to gain additional insight into these 

potential cognitive similarities. 

Finally, the algorithm provides a very fine-grained representation 

of the action “states” that are salient for the data set. Following 

the first instantiation of k-means, we were left with a set of 

representative “states” that were shared across several 

participants. Recall that each state consisted of the proportion of 

time spent doing each of the five general action classes, within a 



given segment. This representation of the action states is several 

levels of granularity beyond what could reasonably be inferred by 

a human observer. Instead, humans tend to be limited to seeing 

“states” that are largely characterized by a single action code. For 

example, a human may be inclined to group all UNDO actions 

into the same “state,” when, in fact, the context in which UNDO 

actions are happening is very important. Our analysis is able to get 

“states” that are characterized by relative proportions of all of the 

action codes. This provides a much more precise representation of 

the different “states” and helps in articulating a clearer difference 

among participants of differing expertise. 

5.3 Gesture based analysis 
The gesture based analysis also produced a number of key 

findings. First, there are clearly correlations between the gestures 

individuals make and the object manipulation action that they 

undertake. This finding is inferred from the fact that both 

techniques were able to yield relatively accurate results. This, 

again, may be useful for improving automatic detection of object 

manipulation actions. Additionally, the analysis was able to make 

use of a theory concerning two-handed coordination and the 

implications that this has on problem solving. In our case we 

found that two-handed coordinated actions were correlated with 

expertise. It is our conjecture that there are additional theories 

related to embodied cognition that can be discovered or leveraged 

in research concerning building-based assessments. 

Finally, the gesture-based analysis highlights a potential area of 

easy intervention for trying to effect behavioral changes among 

students. Though we have yet to explore these interventions, one 

can imagine showing a student a plot of their own hand 

movements while they are participating in a building task, and see 

how this additional awareness of their body movements either 

helps, or hurts their ability to successfully complete the task. Such 

an intervention could be enhanced by sharing with the student 

knowledge about two-handed inter-hemispheric interactions, to 

see how this helps the student perform more like an expert. 

Looking at the analysis as a whole, we are looking to motivate the 

development of authentic, process-oriented assessments that can 

be enacted in minimally instrumented environments. Our interest 

in doing this is to create additional ways for validating student 

learning in project-oriented environments. This goal is also 

grounded in a desire to develop techniques that can eventually be 

utilized within both formal and informal learning environments. 

In future work we plan to combine our data capture technique 

with a think-aloud protocol, as so we can begin to align user 

actions and user cognition more explicitly. We will also endeavor 

to study how collaboration influences the emergence of expert-

like behaviors. Finally, we will continue to work towards 

developing techniques for automatically labeling user object 

manipulation actions during the task explored in this analysis, as 

well as with other tasks. 

6. CONCLUSION 
In this paper, we have presented a pair of techniques for analyzing 

and detecting expertise as recognized through object manipulation 

and gestures. In so doing, we identified key elements in how to 

segment and compress object manipulation codes, while also 

showing how dynamic time warping combined with clustering can 

be used to accurately classify student expertise. In addition to 

classification, we have generally motivated the use of multimodal 

learning analytics for supporting authentic, process-oriented 

assessments, as this technique has permitted us to realize a more 

fine-grained level of expertise delineation than could have been 

reasonably perceived by a human. Finally, the approach has made 

it evident that meaningful analysis can be gleaned from simply 

watching and measuring student actions as they participate in 

building tasks, a realization that we hope will encourage other 

researchers to embark upon this promising, yet challenging, area 

of study. 
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