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ABSTRACT 
The recent emergence of several low-cost, high resolution, 
multimodal sensors has greatly facilitated the ability for 
researchers to capture a wealth of data across a variety of 
contexts. Over the past few years, this multimodal technology has 
begun to receive greater attention within the learning community. 
Specifically, the Multimodal Learning Analytics community has 
been capitalizing on new sensor technology, as well as the 
expansion of tools for supporting computational analysis, in order 
to better understand and improve student learning in complex 
learning environments. However, even as the data collection and 
analysis tools have greatly eased the process, there remain a 
number of considerations and challenges in framing research in 
such a way that it lends to the development of learning theory. 
Moreover, there are a multitude of approaches that can be used for 
integrating multimodal data, and each approach has different 
assumptions and implications. In this paper, I describe three 
different types of multimodal analyses, and discuss how decisions 
about data integration and fusion have a significant impact on how 
the research relates to learning theories. 

Categories and Subject Descriptors 
K.3.m [Computers and Education]: Computer Uses in 
Education – Miscellaneous.  
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1. INTRODUCTION 
Over the past few years multimodal learning analytics [1 - 4] has 
become an increasingly prevalent paradigm for studying and 
improving complex learning environments. However, even as the 
field has started to develop an identity, there remains a wide range 
of research that gets cast under the guise of multimodal learning 
analytics. In this paper, I provide a framework and a set of 
terminology that can be used to both characterize and advance the 
types of multimodal learning analytics research that we, as a field, 
pursue. Specifically, I describe three studies that represent 
different approaches for studying complex learning environments 
through multimodal learning analytic techniques. Each approach 
represents a different underlying frame for how multimodal data 
streams are fused. The three approaches that I discuss are the 
naïve fusion frame, the low-level fusion frame, and high-level 
fusion frame. These three frames are not expected to encompass 
all research that would be categorized under the heading of 

multimodal learning analytics, but likely represent the simplest, 
most common, and perhaps, most important analytic approaches. 
 

In the sections to follow, I present an analysis from the 
perspective of each of the aforementioned frames, and then 
discuss some of the affordances and drawbacks that they confer. 
However, before describing each frame in detail, I highlight prior 
research that will be important for the forthcoming discussion of 
the three different approaches.  
 

2. PRIOR LITERATURE 
This paper builds on [5], which describes various “bands of 
cognition,” and later work by [6]. Specifically, [5] describes time 
scales across which human actions can be interpreted as 
biological, cognitive, rational and social. Each band captures three 
orders of magnitude beginning from 100s of microseconds (10-4 

seconds), all the way up to months (107 seconds). Specifically, the 
biological band is centered on time scales of a microsecond; the 
cognitive band on time scales of seconds; the rational band on 
time scales of 10 minutes; and the social band on time scales of 
weeks. The framework also describes how each time scale is 
associated with different levels of intentionality, and different 
types of activities. For example, actions that take place within the 
biological band are sometimes interpreted as occurring at an 
unconscious, non-deliberate level, whereas, completion of a task 
is normally associated with human actions in the rational band. [6] 
builds on this framework by considering the extent to which 
human actions that occur within a very short time scale, i.e. one of 
the lower bands (biological band or cognitive band), influence 
human actions at larger time scales, i.e. the rational band and the 
social Band. In discussing a bridge across time spans, [6] proposes 
three theses: the Decomposition Thesis, the Relevance Thesis and 
the Modeling Thesis. The Decomposition Thesis claims that the 
events that occur at longer time scales, can be decomposed into 
actions on shorter time scales. The Relevance Thesis relates to the 
claim that the “microstructure of cognition is relevant for 
educational issues.” In practical terms, this means that short time 
scale actions are important for studying and diagnosing learning 
development. Finally the Modeling Thesis is concerned with the 
ability for cognitive modeling to help explain how to use the fine-
grained information to improve instruction.   
 

In the context of the bands of cognition and the various theses 
proposed by [6], this paper can be seen as describing ways that 
multimodal learning analytics has relevance at different time 
scales, and their associated bands of cognition. Specifically, when 
fusing different data streams, an important consideration will be 
the time scale(s) that are being used, and the time scale(s) of the 
results that are presented. Decisions about each of these will be 
central to the analysis’ utility for relating to, or building on, 
learning theory. These decisions will also have a significant 
impact on the implications derived from the analysis. 
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3. NAÏVE FUSION/CLASSIFIER FRAME 
I begin with the Naïve Classifier Frame because it, in many 
respects, represents the simplest approach used in conducting 
multimodal learning analytics research. This particular approach 
is typified by the integration of aggregate features from a variety 
of modalities, without a specific hypothesis or set of assumptions 
about how those features interact with one another - this is the 
basis for using the term ‘naïve.’ At the same time it is often the 
approach used to conduct exploratory research. That the approach 
is termed ‘naïve’ should not, however, be taken to mean that the 
features used from each of the different modalities are without 
theoretical merit. Instead, researchers often use prior experience, 
and prior literature in order to inform which features they will 
consider in their analysis. To make this clearer, I use an example 
from my prior work that examines expertise in an engineering 
design context [7]. 

The data analyzed was derived from eighteen students at a tier-1 
research university. This population of students included 
everything from undergraduate humanities majors, to PhD level 
engineering graduate students. Student’s prior experience was 
used to label them as either a novice, an intermediate or an expert. 
During the study, each student was asked to individually design 
an automatic trash separation system that could distinguish 
between glass, paper, plastic and metal. As students engaged in a 
think-aloud protocol, I collected, audio and video data, in addition 
to their design drawings. 

For this specific study, I was able to conduct various individual 
analyses based on: content word from science, technology, 
engineering and mathematics (STEM) domains; speech (prosodic 
and spectral features), dependency parsing; scientific 
argumentation; sentiment; and drawing. These features were 
selected based on prior work that found correlations between 
expertise and scientific argumentation [8], sentiment [9 - 11], 
language and speech [12, 13], uncertainty [13], to name a few. 
Furthermore, the design of the study was informed by previous 
work from the learning sciences that uses interviews to study 
experts and novices (e.g. [14 – 16]). However, when conducting 
the analysis I did not have a specific theoretical framework for 
describing how the different modalities interacted with one 
another. Hence, my approach was to use natural demarcations in 
the interview and examine aggregate summary statistics, i.e. 
minimum, maximum and mean, for each modality. 

Using the data extracted from the different techniques, I used a 
combination of feature reduction algorithms to pinpoint the 
features that (1) most closely aligned to student expertise and (2) 
that seemed most appropriate for inclusion. Some of these features 
included student certainty, sentiment, adaptive tool usage and the 
frequencies of strategic and schematic utterances. Thus, simply 
completing feature reduction proved to be a useful entry point for 
identifying practices and behaviors associated with expertise.  

After identifying the appropriate features from each modality, I 
used those features to train an unsupervised model that predicted 
expertise among the three possible class labels, at 87% accuracy, 
which was significant given than humans achieved less than 50% 
accuracy, when judging participant expertise based on transcripts 
of each participant’s response. 

Utilizing a process that involves identification of aggregate 
features that correlate with one’s dependent variable is a good 
starting point for exploratory analysis of student behaviors. Those 
features can subsequently be used to create a model or classifier 
and iteratively improved based on one’s objective. However, 
basing one’s analysis on aggregate features may overlook some of 

the nuances of the data, especially in the case where the researcher 
has a specific question in mind. Moreover, in the context of 
Newell’s bands of cognition, taking aggregate measures from an 
entire experiment may only be useful for identifying features that 
exist in the rational or social bands.  

4. LOW-LEVEL FUSION FRAME 
The second approach that I present is one that fits most models of 
low-level fusion. In this paradigm, the researcher is intentional 
about enacting multimodal data fusion on very small time scales. 
One reason for doing this is because the researcher may have prior 
knowledge that the various modalities have time specific 
relevance to one another. For example, the participant’s average 
pitch may be of less importance, than their pitch in the context of 
their immediate actions, or gestures. To better describe this 
approach, I will again present an example from my own work 
[17]. 

The particular instance that I describe, builds on work from 
epistemological frames [18, 19]. The work of [18] identifies 
student epistemological frames based on multimodal behaviors. 
Specifically, they found that a combination of posture, gaze, 
gesturing and speech, could be used to typify four very distinct 
epistemological frames that students use in a multi-person, 
collaborative problem-solving setting. Research by [19] expands 
on this work by describing the epistemological frames that 
students use during informal cognitive clinical interviews. Within 
these interviews, the authors again used multimodal data in order 
to describe the characteristic behaviors of an expert frame, an 
inquiry frame and an oral examination frame. 

Accordingly, my use of multimodal analysis in the low-level 
fusion frame, is motivated be a desire to capture similar 
epistemological frames as previous authors. However, my context 
is somewhat different, in that I am studying pairs of students as 
they complete an engineering design task. Because of this, I do 
not assume that the common multimodal behaviors will be the 
same. To address this, and identify what the common frames in 
the context of my study, I collect audio, hand/wrist movement and 
electro-dermal activation data. I fuse the three data streams, on a 
per second basis, between each pair of design trial that the 
students attempt. For a given second in time a participant can be 
described based on whether or not they generated audio, their 
average hand/wrist displacement, and their average electro-dermal 
activation value. Note: data from each sensor was captured at a 
different time scale, thus it was advantageous to find a lowest 
common denominator and use that for data fusion. 

Those values were then used to populate a matrix that included all 
data points for all students. Each column of the matrix was 
normalized, and then processed through X-Means clustering to 
identify the common behaviors. Figure 1 contains the cluster 
centroids for the four common behaviors that emerged.  

From the cluster centroids there is a cluster typified by high 
amounts of audio, another typified by high amounts of stress, and 
another typified by high amounts of hand/wrist movement. 
Interestingly, though, the fourth cluster is defined as having 
average values across all three dimensions, which I have entitled 
FLOW. What is not reflected in this figure though, is that the vast 
majority of user actions fall into the FLOW behavior Figure 2. 
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Lastly, high-level fusion as presented here tries to draw additional 
semantic from the raw, low-level data, such that seemingly similar 
patterns at the low-level can be properly binned based on the 
user’s intentions, for example. This is important when the low-
level data does not properly capture the specific level of analysis, 
learning theory, or band of cognition that the researcher is 
interested in. However, as observed in the example, one cannot 
always expect for low-level fusion, and high-level fusion to 
provide the same results. Instead, based on prior work from 
psychology, one could actually expect for these to be quite 
different. That said, high-level fusion has significant potential to 
provide deep insights into how the semantic actions or behaviors 
are being enacted. 

7. CONCLUSION 
With the advent of new multimodal sensor technology, 
multimodal learning analytics appears to be getting easier. 
However, as one is embarking on this form of analysis, it is 
important to carefully consider the theoretical frame being used, 
as this may have a large consequences on the results one attains. 
In this short paper I have presented examples from three different 
data fusion strategies, all of which have different affordances and 
different drawbacks. As previously noted, this list of fusion 
strategies is not exhaustive, and does not begin to consider the 
complexities introduced by considering that direct time alignment 
is not necessarily appropriate for various types of data fusion.  

While the goal of this paper has not been to suggest that any one 
approach is better than the other, I do generally advocate for 
techniques that have a clear connection to previous learning 
theory, or that are in pursuit of new learning theory. Additionally, 
I think it is important to consider how one’s analysis can relates to 
learning practices and behaviors. That said, there are opportunities 
to do this using any of the three data fusion techniques, the 
challenge, however, is determining the level of analysis at which 
your studies have relevance and to think about how to use those 
finding to make bridges to learning pedagogy.  
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