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Abstract: The area of learning analytics is often viewed as a tool for supporting quantitative 
analysis. Based on previous research, this association between quantitative analysis and 
learning analytics does seem to be the trend. However, certain researchers have proposed the 
use of multimodal learning analytic techniques as a viable and valuable contribution to more 
qualitative research methodologies. This paper examines that idea by trying to use the output 
from an algorithm that learns discriminating features, as the starting point for video 
observations.  Ultimately, the analysis suggests that there is utility in leaning on machine 
learning to help identify important patterns in the data, provided that those patterns are 
contextualized and studied using the original video data. Additionally, the work makes clear 
the need for better tools for conducting these types of multimodal analyses.  

Introduction 
The past decade has seen the emergence and expansion of research at the intersection of data mining and 
education research. In particularly, the fields of educational data mining, and learning analytics have gained 
increased traction as novel ways for studying learning (Baker & Yacef, 2009; Martin & Sherin, 2013). While 
educational data mining and learning analytics have traditionally focused on data derived from cognitive tutors, 
learning management systems and other computer mediated experiences, multimodal learning analytics 
(Blikstein & Worsley, 2016), a growing subfield of learning analytics, has been proposed to study more 
collaborative, human-to-human interactions. Moreover, researchers within this sub-field have positioned 
multimodal learning analytics as a set of techniques that have relevance for qualitative researchers. The goal of 
this paper is to examine this claim. In particular, the analysis will use techniques from multimodal learning 
analytics to learn an algorithm that can distinguish between students who recorded positive learning gains, from 
those who recorded negative learning gains. Key elements of the algorithm are then used to extract segments of 
video that correspond to behaviors that positively and negatively correlate with learning gains. Finally, these 
video segments are used to qualitatively draw inferences about how students learned from the experience. 

Prior literature 
Multimodal learning analytics uses non-traditional sensory data (gestures, gaze, speech, emotions, digital pen 
traces, etc.) to study and model student learning. As with any sub-field involving “analytics,” there is a 
presumed reliance on computational techniques, as well as an assumed level of automaticity. Despite this 
assumed automaticity, multimodal learning analytics is heavily influenced by human intuitions with many 
researchers adopting mixed-method approaches (Prieto & Rodriguez-Triana, 2017). From the design and 
implementation of the specific algorithms, to the labelling of training data, human intelligence plays is essential. 
However, the mere inclusion of human input at some point during the analytic process does not truly speak to 
the disposition of qualitative research. Instead, we seek is a high level of intimacy with the data. 

Worsley & Blikstein (2014) provide an interpretation of research that combines learning analytics and 
qualitative analysis. Within this study, the researchers hand-coded student actions into one of five possible states 
(build, test, adjust, undo or plan). They then used machine learning to identify patterns within each user’s 
processes, and studied how those processes differed by the participant’s level of expertise. 

Prieto & Sharma (2017) and Liu & Stamper (2017) take an approach that is motivated by reducing the 
amount of human coding required. Prieto & Sharma (2017) leverages four measures for cognitive load in the 
context of mobile eye tracking in classrooms. They use those measures to identify regions of the video that have 
high agreement, and, in this way reduce the amount of data that they analyze. Liu & Stamper (2017) take a 
similar approach in identifying regions of video that have been tagged within a cognitive tutor. Their tool then 
allows them to automatically extract video segments that correspond to any number of important events. 

The aforementioned papers offer potential paradigms for multimodal learning analytics to integrate 
with qualitative research practices. This paper presents another paradigm, that, in a sense, sits at the intersection 
of these two approaches. More specifically, the approach will rely on machine learning to identify 
characteristics or behaviors that seem to correlate with learning, and then generate a subset of videos that a 
human can study to better understand the semantics of the behaviors. 
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Methods 
The analysis presented in this paper is based on a subset of the Engineering Design with Everyday Materials 
Multi-modal Dataset (Worsley, 2017). This dataset includes 54 students from a community college in the United 
States and features nearly 27 hours data. Participants worked in pairs to complete two engineering design tasks. 
The first task asked students to use one sheet of printer paper to construct a structure that could support one or 
more engineering textbooks at least three inches above a table. Students had six minutes to complete this task. 
In the second task, students had 10 minutes to build a structure that could support a mass of 0.5 lb. as high off 
the table as possible using limited household materials. This task involved similar engineering principles as the 
first task, but with greater variability in the materials, and with the added goal of height optimization. While 
scores for how well each structure performed are included in the dataset, they are not used within this analysis. 
Instead, this analysis focuses on learning gains. The learning gains are based on the student’s identification of 
principles or mechanisms that confer stability to three example structures (a bridge, a ladder and an igloo). The 
recorded learning gains are the change in the proportion of a student’s responses that refer to a structure’s 
configuration or geometry (i.e. triangles, wide base, and symmetry). Referring to a structure’s geometry 
contrasted with references to a structure’s material (i.e. metal, wood). Students who increased the proportion of 
configuration/geometry-based principles on the post-test, relative to their pre-test, were classified as having 
learned. Explaining why some students seem to recognize the relative importance of geometry while others did 
not is the primary focus of this analysis. Along with the learning gains information, the dataset also includes 
multi-modal data. The focal data for this study is derived from the Xbox Kinect Sensor which generated skeletal 
tracking, head pose and audio data. For the sake of simplicity, this analysis focuses head pose, or, more 
generally, eye gaze, as derived from frontal images of each student. Head pose was calculated using OpenFace 
(Baltrušaitis, Robinson, & Morency, 2016). The section that follows briefly describes how the data was used. 

Analytics summary 
The initial dataset of 54 students was reduced to ten students due to missing head pose data for several students. 
The head pose data is recorded as values for pitch, roll and yaw. These values correspond to looking up and 
down, left and right and tilting one’s head. Values for yaw (looking left or right) were transformed such that 
they corresponded to looking away from one’s partner or looking towards one’s partner. This transformation 
aims to eliminate the positional dependence of seating arrangement, as students were seated one next to the 
other. Values for pitch were left unchanged, but were included within the analysis because they could proxy for 
identifying when a participant is looking more towards the materials, or elsewhere. Values for roll (tilting one’s 
head left or right) were omitted because they did not have a clear significance in this analysis. 

The next step was to automatically cluster the data. Before clustering, however, data underwent 
column-based normalization. Each value was divided by the standard deviation of the column to minimize bias. 
K-means (N=5) was used to cluster the data from both of the tasks. In this way, it is assumed that the postural 
enactments are sufficiently similar across the two tasks as to warrant a combined clustering step. After the 
clustering step, every time step, for each participant was associated with one of five possible clusters. 

The clustered data was used to compute the proportion of time participants spent using each cluster 
across each task. This analysis focuses on cluster frequency from the second task. 

The proportion of time in each cluster was used to train a decision tree classifier that learns cluster 
frequency values that correlate with positive and negative learning gains. Note: This process did not follow the 
usual machine learning convention of cross-validation or doing a training-testing split. The reason for this is an 
explicit interest in identifying the differences between those with differential learning gains in this dataset.  

The nodes of the decision tree were used to identify which clusters would be worthwhile to examine 
via human coding. Specifically, a custom script was used to identify contiguous segments of video that included 
the cluster of interest. Extracted segments were a minimum of three seconds long. A random selection of no 
more than five video segments per participant were extracted for human observation. 

Finally, a team of researchers performed open coding on the videos to determine how the videos from 
different clusters were semantically different from one another. Conducting this process involved repeated 
observation of the videos among the team of five researchers. 

Results 
A key, and somewhat surprising, result that emerged from looking at the output of the cluster frequency 
aggregation step, was that the cluster frequencies for several of the clusters perfectly correlated with learning.  
Table 1 indicates that participants with a c3 (cluster 3) proportion of less than 0.2 all recorded negative learning 
gains. Similarly, participants with larger c3 proportions recorded higher learning gains. On the other hand, lower 
c1 (cluster 1) scores seem to correlate with positive learning gains. 
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Table 1: Participant cluster frequencies and learning gains 
 

USER LEARNING C0 C1 C2 C3 C4 
10_1 -0.636 0.302 0.132 0.266 0.139 0.161 
10_2 -0.500 0.320 0.192 0.261 0.129 0.098 
9_1 -0.017 0.367 0.180 0.152 0.168 0.133 
9_2 0.208 0.323 0.148 0.167 0.248 0.113 
14_1 0.000 0.245 0.118 0.143 0.332 0.162 
14_2 0.193 0.280 0.107 0.112 0.398 0.103 
27_1 0.381 0.393 0.070 0.137 0.232 0.168 
27_2 0.444 0.437 0.057 0.098 0.247 0.162 
23_1 0.178 0.306 0.012 0.082 0.424 0.176 
23_2 0.533 0.512 0.012 0.048 0.298 0.131 

 
With the apparent observation that cluster 1 and cluster 3 frequency appear to correlate with student learning on 
this activity, the next step was to study the values that characterize those clusters and delve into the videos. 
Table 2 highlights the pitch and yaw values for each cluster. 
 
Table 2: Cluster centroid values (positive pitch corresponds to up, positive yaw is towards their partner) 
 

CLUSTER 0 1 2 3 4 
PITCH -0.72517 0.475809 -1.24574 0.391357 -2.00303 
YAW 1.630276 0.331196 -0.09873 2.031234 1.652582 

 
While the numbers suggest some difference between the clusters, the numbers are not of much benefit in 
determining how the different head poses would result in, or correlate with, differential learning gains on the 
activity. Hence, video coding was used to gain more detailed insights. 

In studying the videos, the first step was to consider if the types of actions (e.g., building, planning, 
undoing, etc.) that students were taking in the different clusters were substantively different. However, no clear 
differences emerged across the different groups along this dimension. Instead, the key difference had everything 
to do with where the participants were looking, or, more importantly, where they were working. Looking at the 
figures (Figure 1) we see one potential difference between the two head poses. Namely, in cluster 1, the 
student’s attention is focused on building higher off the table than in cluster 3.  We saw this difference across a 
number of participants in the sample. The other key difference that we observed was that in cluster 1, more of 
the frames involved the student looking forward, while in cluster 3, the students spent more time looking toward 
their partner. 

 

 

 
Figure 1. Images a,b,c,d (from left to right) provide examples of cluster 1 (a and c) and cluster 3 (b and d). 
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Discussion 
In summary, the analysis above relied on machine learning and multimodal data to pinpoint behavioral 
differences between participants with differential learning gains during a set of engineering design activities. 
Identification of those behavioral differences emerged based on unsupervised clustering of head pose data. 
When we examined the numeric data for the salient differences, it was unclear as to what was occurring. One 
could certainly postulate plausible arguments about learner engagement based on those numbers, but this would 
ultimately have been unsatisfying. Instead, a closer look at the video data made it apparent that differences 
existed in the height at which students were building and/or designing, as well as in the extent of engagement 
with their collaborator. This may point to differences in how much students were focusing on the base of the 
structure, something that is important to conferring stability to a design, as well as non-content related issues of 
collaboration quality. Hence, the differences in pose, while represented in the form of two clusters, 
corresponded to a larger set of behaviors that necessitated thoroughly engaging the video.  

The above analysis is not intended to provide the only explanation for the observed differential 
learning gains. Moreover, the qualitative analysis of the videos was in no way exhaustive. Instead, this work 
aims to provide an example of how to make use of multimodal learning analytic techniques for supporting 
qualitative analysis. The algorithm took care of the discrimination between those who learned and those who did 
not, while the task of making sense of those differences rested on the researcher.  

An additional point of discussion is the noted challenges in doing this work. Even after collecting and 
synchronizing the data, both of which relied on custom developed computer programs, there was the task of 
extracting the salient features, and subsequently identifying a subset of videos to analyze via human inference. 
These steps involved custom Python scripts and a number of machine learning libraries. Adopting this strategy 
more broadly will likely require robust, interpretable, and easy to use analysis and visualization tools (Liu & 
Stamper, 2017; Rodríguez-Triana, Prieto, Holzer, & Gillet, 2017). 

Conclusion 
Data mining and computational techniques are gaining increasing prevalence within the education research 
community. However, these strategies and tools are primarily being utilized by researchers with more of a 
quantitative orientation. It is the goal of this paper to demonstrate one way for leveraging multimodal learning 
analytics in a more qualitative fashion. While there remains a need for more robust and easy to use tools, there 
is a profound opportunity for researchers to deeply examine their data through a different set of lenses. 
Furthermore, as more qualitative researchers look to these tools to support and facilitate their analysis, 
technology designers will be able to better tailor the tools to the needs of qualitative researchers. 
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